人工智能在新生儿坏死性小肠结肠炎辅助诊疗中的研究进展

姜齐, 张莉

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (10) : 1281-1285.

PDF(529 KB)
HTML
PDF(529 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (10) : 1281-1285. DOI: 10.7499/j.issn.1008-8830.2503023
综述

人工智能在新生儿坏死性小肠结肠炎辅助诊疗中的研究进展

作者信息 +

Recent advances in artificial intelligence for auxiliary diagnosis and management of neonatal necrotizing enterocolitis

Author information +
文章历史 +

摘要

坏死性小肠结肠炎(necrotizing enterocolitis, NEC)是一种严重威胁新生儿生命的疾病,其发病机制与早产、低出生体重、缺氧、感染、免疫异常等多种因素相关。近年来,人工智能因其优秀的数据处理与诊断能力,在疾病诊断领域得到广泛应用。在NEC辅助诊疗中,人工智能可通过分析临床数据及影像学结果,应用于早期识别、鉴别诊断、治疗决策制定及预后评估等方面,为临床诊疗提供辅助。该文综述近年来人工智能和机器学习算法在NEC辅助诊疗中的应用进展,比较各类算法的特点与侧重点,为其在该领域的进一步应用提供参考。

Abstract

Necrotizing enterocolitis (NEC) is a life-threatening gastrointestinal disease of neonates with a multifactorial pathogenesis involving prematurity, low birth weight, hypoxia, infection, and immune dysregulation. Owing to its superior data processing and diagnostic capabilities, artificial intelligence (AI) has been increasingly applied to support clinical care. By analyzing clinical and imaging data, AI approaches can aid in early identification, differential diagnosis, treatment decision-making, and prognostic evaluation, thereby complementing clinician judgment. This review summarizes recent advances in the application of AI and machine learning for NEC diagnosis and management, comparing the characteristics and strengths of different algorithms. The aim is to provide a reference for further development and implementation of AI-assisted tools in this field.

关键词

坏死性小肠结肠炎 / 人工智能 / 机器学习 / 新生儿

Key words

Necrotizing enterocolitis / Artificial intelligence / Machine learning / Neonate

引用本文

导出引用
姜齐, 张莉. 人工智能在新生儿坏死性小肠结肠炎辅助诊疗中的研究进展[J]. 中国当代儿科杂志. 2025, 27(10): 1281-1285 https://doi.org/10.7499/j.issn.1008-8830.2503023
Qi JIANG, Li ZHANG. Recent advances in artificial intelligence for auxiliary diagnosis and management of neonatal necrotizing enterocolitis[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(10): 1281-1285 https://doi.org/10.7499/j.issn.1008-8830.2503023

参考文献

[1]
马乐, 唐小晶, 王义. 基于血流动力学监测的乌司他丁在新生儿坏死性小肠结肠炎的临床研究[J]. 中国实用儿科杂志, 2023, 38(2): 119-124. DOI: 10.19538/j.ek2023020609 .
[2]
Battersby C, Santhalingam T, Costeloe K, et al. Incidence of neonatal necrotising enterocolitis in high-income countries: a systematic review[J]. Arch Dis Child Fetal Neonatal Ed, 2018, 103(2): F182-F189. DOI: 10.1136/archdischild-2017-313880 .
[3]
邓智月, 徐凤丹, 何晓光, 等. 贫血与新生儿坏死性小肠结肠炎发病关系的研究进展[J]. 中国当代儿科杂志, 2024, 26(6): 646-651. PMCID: PMC11562064. DOI: 10.7499/j.issn.1008-8830.2312089 .
[4]
Gordon P, Christensen R, Weitkamp JH, et al. Mapping the new world of necrotizing enterocolitis (NEC): review and opinion[J]. EJ Neonatol Res, 2012, 2(4): 145-172. PMCID: PMC3666872.
[5]
Wang K, Tao G, Sun Z, et al. Recent potential noninvasive biomarkers in necrotizing enterocolitis[J]. Gastroenterol Res Pract, 2019, 2019: 8413698. PMCID: PMC6501130. DOI: 10.1155/2019/8413698 .
[6]
王惠萍, 王莉, 高琼, 等. 极低出生体重坏死性小肠结肠炎患儿体格及神经发育的研究[J]. 中国儿童保健杂志, 2023, 31(1): 96-100. DOI: 10.11852/zgetbjzz2022-0621 .
[7]
王姗姗, 蔡金洋, 史爱武, 等. 肠道微生物稳态对坏死性小肠结肠炎新生大鼠模型造血系统的影响[J]. 中国当代儿科杂志, 2023, 25(8): 855-863. PMCID: PMC10484087. DOI: 10.7499/j.issn.1008-8830.2301082 .
[8]
Zhou J, Xie Y, Liu Y, et al. Interpretable machine learning model for early prediction of disseminated intravascular coagulation in critically ill children[J]. Sci Rep, 2025, 15(1): 11217. PMCID: PMC11965335. DOI: 10.1038/s41598-025-91434-w .
[9]
Ahmadzadeh E, Kim J, Lee J, et al. Early prediction of intraventricular hemorrhage in very low birth weight infants using deep neural networks with attention in low-resource settings[J]. Sci Rep, 2025, 15(1): 10102. PMCID: PMC11933458. DOI: 10.1038/s41598-025-90901-8 .
[10]
McAdams RM, Kaur R, Sun Y, et al. Predicting clinical outcomes using artificial intelligence and machine learning in neonatal intensive care units: a systematic review[J]. J Perinatol, 2022, 42(12): 1561-1575. DOI: 10.1038/s41372-022-01392-8 .
[11]
Conte L, Amodeo I, De Nunzio G, et al. A machine learning approach to predict mortality and neonatal persistent pulmonary hypertension in newborns with congenital diaphragmatic hernia. A retrospective observational cohort study[J]. Eur J Pediatr, 2025, 184(4): 238. PMCID: PMC11897082. DOI: 10.1007/s00431-025-06073-0 .
[12]
杨启越, 张新华, 贾晓云, 等. 新生儿坏死性小肠结肠炎相关因素研究[J]. 中华流行病学杂志, 2025, 46(3): 492-498. DOI: 10.3760/cma.j.cn112338-20240826-00526 .
[13]
Cho H, Lee EH, Lee KS, et al. Machine learning-based risk factor analysis of necrotizing enterocolitis in very low birth weight infants[J]. Sci Rep, 2022, 12(1): 21407. PMCID: PMC9741654. DOI: 10.1038/s41598-022-25746-6 .
[14]
Leiva T, Lueschow S, Burge K, et al. Biomarkers of necrotizing enterocolitis in the era of machine learning and omics[J]. Semin Perinatol, 2023, 47(1): 151693. PMCID: PMC9975050. DOI: 10.1016/j.semperi.2022.151693 .
[15]
Kim SH, Oh YJ, Son J, et al. Machine learning-based analysis for prediction of surgical necrotizing enterocolitis in very low birth weight infants using perinatal factors: a nationwide cohort study[J]. Eur J Pediatr, 2024, 183(6): 2743-2751. PMCID: PMC11098869. DOI: 10.1007/s00431-024-05505-7 .
[16]
Sitek A, Seliga-Siwecka J, Płotka S, et al. Artificial intelligence in the diagnosis of necrotising enterocolitis in newborns[J]. Pediatr Res, 2023, 93(2): 376-381. DOI: 10.1038/s41390-022-02322-2 .
[17]
Li Y, Wu K, Yang H, et al. Surgical prediction of neonatal necrotizing enterocolitis based on radiomics and clinical information[J]. Abdom Radiol (NY), 2024, 49(4): 1020-1030. DOI: 10.1007/s00261-023-04157-9 .
[18]
Weller JH, Scheese D, Tragesser C, et al. Artificial intelligence vs. doctors: diagnosing necrotizing enterocolitis on abdominal radiographs[J]. J Pediatr Surg, 2024, 59(10): 161592. PMCID: PMC11401766. DOI: 10.1016/j.jpedsurg.2024.06.001 .
[19]
Ji J, Ling XB, Zhao Y, et al. A data-driven algorithm integrating clinical and laboratory features for the diagnosis and prognosis of necrotizing enterocolitis[J]. PLoS One, 2014, 9(2): e89860. PMCID: PMC3938509. DOI: 10.1371/journal.pone.0089860 .
[20]
van Druten J, Khashu M, Chan SS, et al. Abdominal ultrasound should become part of standard care for early diagnosis and management of necrotising enterocolitis: a narrative review[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(5): F551-F559. DOI: 10.1136/archdischild-2018-316263 .
[21]
李振宇. 基于机器学习算法的早产儿坏死性小肠结肠炎预测模型的建立[D]. 长春: 吉林大学, 2022.
[22]
Song J, Li Z, Yao G, et al. Framework for feature selection of predicting the diagnosis and prognosis of necrotizing enterocolitis[J]. PLoS One, 2022, 17(8): e0273383. PMCID: PMC9390903. DOI: 10.1371/journal.pone.0273383 .
[23]
Lin YC, Salleb-Aouissi A, Hooven TA. Interpretable prediction of necrotizing enterocolitis from machine learning analysis of premature infant stool microbiota[J]. BMC Bioinformatics, 2022, 23(1): 104. PMCID: PMC8953333. DOI: 10.1186/s12859-022-04618-w .
[24]
Hooven TA, Lin AYC, Salleb-Aouissi A. Multiple instance learning for predicting necrotizing enterocolitis in premature infants using microbiome data[J]. Proc ACM Conf Health Inference Learn (2020), 2020, 2020: 99-109. PMCID: PMC8313028. DOI: 10.1145/3368555.3384466 .
[25]
Caplan MS, Underwood MA, Modi N, et al. Necrotizing enterocolitis: using regulatory science and drug development to improve outcomes[J]. J Pediatr, 2019, 212: 208-215.e1. DOI: 10.1016/j.jpeds.2019.05.032 .
[26]
Son J, Kim D, Na JY, et al. Development of artificial neural networks for early prediction of intestinal perforation in preterm infants[J]. Sci Rep, 2022, 12(1): 12112. PMCID: PMC9287325. DOI: 10.1038/s41598-022-16273-5 .
[27]
Lure AC, Du X, Black EW, et al. Using machine learning analysis to assist in differentiating between necrotizing enterocolitis and spontaneous intestinal perforation: a novel predictive analytic tool[J]. J Pediatr Surg, 2021, 56(10): 1703-1710. PMCID: PMC12087352. DOI: 10.1016/j.jpedsurg.2020.11.008 .
[28]
Irles C, González-Pérez G, Carrera Muiños S, et al. Estimation of neonatal intestinal perforation associated with necrotizing enterocolitis by machine learning reveals new key factors[J]. Int J Environ Res Public Health, 2018, 15(11): 2509. PMCID: PMC6267340. DOI: 10.3390/ijerph15112509 .
[29]
杜京斌, 黄金狮. 新生儿坏死性小肠结肠炎的外科手术治疗现状[J]. 中国实用儿科杂志, 2024, 39(5): 334-338. DOI: 10.19538/j.ek2024050604 .
[30]
Gephart SM, McGrath JM, Effken JA, et al. Necrotizing enterocolitis risk: state of the science[J]. Adv Neonatal Care, 2012, 12(2): 77-87; quiz 88-89. PMCID: PMC3357630. DOI: 10.1097/ANC.0b013e31824cee94 .
[31]
Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria[J]. Pediatr Clin North Am, 1986, 33(1): 179-201. PMCID: PMC7131118. DOI: 10.1016/s0031-3955(16)34975-6 .
[32]
Qi G, Huang S, Lai D, et al. An improved joint non-negative matrix factorization for identifying surgical treatment timing of neonatal necrotizing enterocolitis[J]. Bosn J Basic Med Sci, 2022, 22(6): 972-981. PMCID: PMC9589314. DOI: 10.17305/bjbms.2022.7046 .
[33]
Gao W, Pei Y, Liang H, et al. Multimodal AI system for the rapid diagnosis and surgical prediction of necrotizing enterocolitis[J]. IEEE Access, 2021, 9: 51050-51064. DOI: 10.1109/ACCESS.2021.3069191 .
[34]
Sylvester KG, Ling XB, Liu GY, et al. A novel urine peptide biomarker-based algorithm for the prognosis of necrotising enterocolitis in human infants[J]. Gut, 2014, 63(8): 1284-1292. PMCID: PMC4161026. DOI: 10.1136/gutjnl-2013-305130 .

脚注

所有作者均声明无利益冲突。

基金

陕西省科技厅重点研发计划项目(2024SF-YBXM-316)
2022重大科学攻关问题和医药技术难题(2022KTZ018)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(529 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/