胎龄<32周早产儿支气管肺发育不良多时间点临床预测模型的构建

李雯, 张雪菲, 贺晓日, 王涛, 胡劲涛, 李雯, 董青艺, 龚晓云, 杨勇晖, 陈平洋

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (12) : 1464-1474.

PDF(1621 KB)
HTML
PDF(1621 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (12) : 1464-1474. DOI: 10.7499/j.issn.1008-8830.2503200
论著·临床研究

胎龄<32周早产儿支气管肺发育不良多时间点临床预测模型的构建

作者信息 +

Development of dynamic multi-time-point clinical prediction models for bronchopulmonary dysplasia in preterm infants with gestational age < 32 weeks

Author information +
文章历史 +

摘要

目的 构建基于多时间点的动态预测模型,为胎龄<32周早产儿支气管肺发育不良(bronchopulmonary dysplasia, BPD)的早期诊断和个体化干预提供依据。 方法 回顾性分析2016年1月—2020年11月中南大学湘雅二医院收治的472例胎龄<32周的早产儿的临床资料。采用多因素logistic回归分析,分别在生后第1、7、14、21和28天建立5个独立的预测模型。模型性能通过受试者操作特征曲线下面积和Hosmer-Lemeshow检验评估。 结果 BPD组(n=147)与非BPD组(n=325)的胎龄、出生体重等基线指标比较,差异有统计学意义(P<0.05)。多因素分析显示,各时间点BPD发生的预测因子具有动态演变特征:第1天主要包括胎龄、出生体重、新生儿急性生理学评分Ⅱ、有创机械通气和吸入氧浓度>30%;第7天新增禁食时间>2 d、平均加奶速度<8.5 mL/(kg·d)、新生儿呼吸窘迫综合征、早产儿呼吸暂停及痰培养阳性等变量;第14天及以后则新增营养与治疗相关指标。生后第1、7、14、21和28天预测模型的判别效能良好,受试者操作特征曲线下面积依次为0.917、0.927、0.939、0.944和0.968,且Hosmer-Lemeshow检验显示校准良好(P>0.05);内部验证组受试者操作特征曲线下面积介于0.899~0.958之间,模型具有较好的稳健性。 结论 基于围产期因素及呼吸支持、营养管理、治疗措施等方面的多个指标构建的胎龄<32周早产儿生后多时间点动态预测模型具有较高的预测效能,有助于BPD的动态风险评估。

Abstract

Objective To develop dynamic prediction models based on multiple postnatal time points to support early diagnosis and individualized intervention for bronchopulmonary dysplasia (BPD) in preterm infants with gestational age < 32 weeks. Methods Clinical data of 472 preterm infants with gestational age <32 weeks admitted to the Second Xiangya Hospital of Central South University between January 2016 and November 2020 were retrospectively analyzed. Multivariable logistic regression was applied to develop five independent prediction models at postnatal days 1, 7, 14, 21, and 28. The performance of the models was assessed using the area under the receiver operating characteristic curve (AUC) and the Hosmer-Lemeshow test. Results Baseline characteristics such as gestational age and birth weight differed significantly between the BPD group (n=147) and the non-BPD group (n=325) (P<0.05). Predictors of BPD evolved across time points: on day 1, key predictors included gestational age, birth weight, Score for Neonatal Acute Physiology II (SNAP-II), invasive mechanical ventilation, and fraction of inspired oxygen >30%; by day 7, additional variables emerged, including fasting duration >2 days, mean feeding advancement rate <8.5 mL/(kg·d), neonatal respiratory distress syndrome, apnea of prematurity, and positive sputum culture; from day 14 onward, nutrition- and treatment-related indicators were incorporated additionally. The models demonstrated good discrimination at postnatal days 1, 7, 14, 21, and 28, with AUCs of 0.917, 0.927, 0.939, 0.944, and 0.968, respectively, and good calibration (Hosmer-Lemeshow P>0.05). Internal validation showed AUCs ranging from 0.899 to 0.958, indicating robust performance. Conclusions Dynamic postnatal prediction models incorporating indicators spanning perinatal factors, respiratory support, nutritional management, and therapeutic interventions demonstrate high predictive performance and facilitate dynamic risk assessment for BPD in preterm infants with gestational age < 32 weeks.

关键词

支气管肺发育不良 / 风险预测模型 / 早产儿

Key words

Bronchopulmonary dysplasia / Risk prediction model / Preterm infant

引用本文

导出引用
李雯, 张雪菲, 贺晓日, . 胎龄<32周早产儿支气管肺发育不良多时间点临床预测模型的构建[J]. 中国当代儿科杂志. 2025, 27(12): 1464-1474 https://doi.org/10.7499/j.issn.1008-8830.2503200
Wen LI, Xue-Fei ZHANG, Xiao-Ri HE, et al. Development of dynamic multi-time-point clinical prediction models for bronchopulmonary dysplasia in preterm infants with gestational age < 32 weeks[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(12): 1464-1474 https://doi.org/10.7499/j.issn.1008-8830.2503200

参考文献

[1]
周应祯, 王婷, 付星梦, 等. 支气管肺发育不良的预后[J]. 中国当代儿科杂志, 2025, 27(1): 115-120. PMCID: PMC11750241. DOI: 10.7499/j.issn.1008-8830.2406004 .
[2]
Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. PMCID: PMC4787615. DOI: 10.1001/jama.2015.10244 .
[3]
江苏省新生儿围产期协作网. 胎龄<32周早产儿中重度支气管肺发育不良危险因素的多中心回顾性分析[J]. 中国当代儿科杂志, 2022, 24(10): 1104-1110. PMCID: PMC9627994. DOI: 10.7499/j.issn.1008-8830.2204145 .
[4]
Blencowe H, Cousens S, Chou D, et al. Born too soon: the global epidemiology of 15 million preterm births[J]. Reprod Health, 2013, 10(Suppl 1): S2. PMCID: PMC3828585. DOI: 10.1186/1742-4755-10-S1-S2 .
Suppl 1
[5]
Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. DOI: 10.1136/bmj.n1974 .
[6]
Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary dysplasia: executive summary of a workshop[J]. J Pediatr, 2018, 197: 300-308. PMCID: PMC5970962. DOI: 10.1016/j.jpeds.2018.01.043 .
[7]
Ramaswamy VV, Bandyopadhyay T, Nanda D, et al. Assessment of postnatal corticosteroids for the prevention of bronchopulmonary dysplasia in preterm neonates: a systematic review and network meta-analysis[J]. JAMA Pediatr, 2021, 175(6): e206826. PMCID: PMC7961472. DOI: 10.1001/jamapediatrics.2020.6826 .
[8]
Kwok TC, Szatkowski L, Sharkey D. Impact of postnatal dexamethasone timing on preterm mortality and bronchopulmonary dysplasia: a propensity score analysis[J]. Eur Respir J, 2023, 62(4): 2300825. PMCID: PMC10586235. DOI: 10.1183/13993003.00825-2023 .
[9]
McEvoy CT, Jain L, Schmidt B, et al. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases[J]. Ann Am Thorac Soc, 2014, 11(Suppl 3): S146-S153. PMCID: PMC4112507. DOI: 10.1513/AnnalsATS.201312-424LD .
Suppl 3
[10]
Romijn M, Dhiman P, Finken MJJ, et al. Prediction models for bronchopulmonary dysplasia in preterm infants: a systematic review and meta-analysis[J]. J Pediatr, 2023, 258: 113370. DOI: 10.1016/j.jpeds.2023.01.024 .
[11]
Sikdar O, Harris C, Greenough A. Improving early diagnosis of bronchopulmonary dysplasia[J]. Expert Rev Respir Med, 2024, 18(5): 283-294. DOI: 10.1080/17476348.2024.2367584 .
[12]
Laughon MM, Langer JC, Bose CL, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants[J]. Am J Respir Crit Care Med, 2011, 183(12): 1715-1722. PMCID: PMC3136997. DOI: 10.1164/rccm.201101-0055OC .
[13]
Valenzuela-Stutman D, Marshall G, Tapia JL, et al. Bronchopulmonary dysplasia: risk prediction models for very-low-birth-weight infants[J]. J Perinatol, 2019, 39(9): 1275-1281. DOI: 10.1038/s41372-019-0430-x .
[14]
Kwok TC, Batey N, Luu KL, et al. Bronchopulmonary dysplasia prediction models: a systematic review and meta-analysis with validation[J]. Pediatr Res, 2023, 94(1): 43-54. PMCID: PMC10356605. DOI: 10.1038/s41390-022-02451-8 .
[15]
Chien LY, Whyte R, Thiessen P, et al. SNAP-Ⅱ predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit[J]. J Perinatol, 2002, 22(1): 26-30. DOI: 10.1038/sj.jp.7210585 .
[16]
Moreira A, Noronha M, Joy J, et al. Rates of bronchopulmonary dysplasia in very low birth weight neonates: a systematic review and meta-analysis[J]. Respir Res, 2024, 25(1): 219. PMCID: PMC11127341. DOI: 10.1186/s12931-024-02850-x .
[17]
黄静, 林新祝, 郑直, 等. 胎龄<32周且出生体重<1 500 g早产儿支气管肺发育不良的发生及其严重程度的影响因素[J]. 中国当代儿科杂志, 2022, 24(12): 1326-1333. PMCID: PMC9785086. DOI: 10.7499/j.issn.1008-8830.2207013 .
[18]
Younge N, Goldstein RF, Bann CM, et al. Survival and neurodevelopmental outcomes among periviable infants[J]. N Engl J Med, 2017, 376(7): 617-628. PMCID: PMC5456289. DOI: 10.1056/NEJMoa1605566 .
[19]
Walsh MC, Yao Q, Gettner P, et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates[J]. Pediatrics, 2004, 114(5): 1305-1311. DOI: 10.1542/peds.2004-0204 .
[20]
江苏省新生儿重症监护病房母乳质量改进临床研究协作组. 多中心回顾性分析极低及超低出生体重儿支气管肺发育不良的临床特点及高危因素[J]. 中华儿科杂志, 2019, 57(1): 33-39. DOI: 10.3760/cma.j.issn.0578-1310.2019.01.009 .
[21]
Li Y, Yan J, Li M, et al. Addition of SNAP to perinatal risk factors improves the prediction of bronchopulmonary dysplasia or death in critically ill preterm infants[J]. BMC Pediatr, 2013, 13: 138. PMCID: PMC3848452. DOI: 10.1186/1471-2431-13-138 .
[22]
Lee SM, Sie L, Liu J, et al. Evaluation of trends in bronchopulmonary dysplasia and respiratory support practice for very low birth weight infants: a population-based cohort study[J]. J Pediatr, 2022, 243: 47-52.e2. PMCID: PMC8960334. DOI: 10.1016/j.jpeds.2021.11.049 .
[23]
Jensen EA, DeMauro SB, Kornhauser M, et al. Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants[J]. JAMA Pediatr, 2015, 169(11): 1011-1017. PMCID: PMC6445387. DOI: 10.1001/jamapediatrics.2015.2401 .
[24]
Karatza AA, Gkentzi D, Varvarigou A. Nutrition of infants with bronchopulmonary dysplasia before and after discharge from the neonatal intensive care unit[J]. Nutrients, 2022, 14(16): 3311. PMCID: PMC9414083. DOI: 10.3390/nu14163311 .
[25]
Bauer SE, Vanderpool CPB, Ren C, et al. Nutrition and growth in infants with established bronchopulmonary dysplasia[J]. Pediatr Pulmonol, 2021, 56(11): 3557-3562. DOI: 10.1002/ppul.25638 .
[26]
Roehr CC, Farley HJ, Mahmoud RA, et al. Non-Invasive ventilatory support in preterm neonates in the delivery room and the neonatal intensive care unit: a short narrative review of what we know in 2024[J]. Neonatology, 2024, 121(5): 576-583. PMCID: PMC11446298. DOI: 10.1159/000540601 .
[27]
Sahni M, Bhandari V. Invasive and non-invasive ventilatory strategies for early and evolving bronchopulmonary dysplasia[J]. Semin Perinatol, 2023, 47(6): 151815. DOI: 10.1016/j.semperi.2023.151815 .
[28]
Watterberg KL, Walsh MC, Li L, et al. Hydrocortisone to improve survival without bronchopulmonary dysplasia[J]. N Engl J Med, 2022, 386(12): 1121-1131. PMCID: PMC9107291. DOI: 10.1056/NEJMoa2114897 .

脚注

所有作者均声明不存在利益冲突。

基金

中南大学湘雅早产儿临床大数据库系统建设(056)

编委: 邓芳明

版权

版权所有 © 2023中国当代儿科杂志
PDF(1621 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/