间充质干细胞来源外泌体通过靶向NLRP3炎症小体减轻新生大鼠脑白质损伤的研究

王超, 朱艳萍, 巴依尔才次克null, 冯玉晴, 王彦梅

中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (9) : 1119-1127.

PDF(2203 KB)
HTML
PDF(2203 KB)
HTML
中国当代儿科杂志 ›› 2025, Vol. 27 ›› Issue (9) : 1119-1127. DOI: 10.7499/j.issn.1008-8830.2504160
论著·实验研究

间充质干细胞来源外泌体通过靶向NLRP3炎症小体减轻新生大鼠脑白质损伤的研究

作者信息 +

Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome

Author information +
文章历史 +

摘要

目的 探索间充质干细胞来源外泌体(mesenchymal stem cell-derived exosome, MSC-Exo)是否通过靶向核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)减轻新生大鼠脑白质损伤(white matter damage, WMD)。 方法 将3日龄Sprague-Dawley大鼠随机分为假手术组、缺氧缺血(hypoxia-ischemia, HI)组、MSC-Exo组及MCC950(NLRP3抑制剂)组(n=24)。采用单侧颈总动脉结扎联合缺氧法构建WMD模型,脑立体定位仪辅助侧脑室移植外泌体(1×108粒子/μL)。建模后14 d,通过苏木精-伊红染色观察脑组织病理变化,透射电镜观察有髓鞘轴突的表达情况,蛋白质印迹法检测髓鞘碱性蛋白(myelin basic protein, MBP)、NLRP3、半胱天冬酶-1(cysteine-dependent aspartate-specific protease 1, caspase-1)及白细胞介素-1β(interleukin-1β, IL-1β)蛋白表达,免疫组化检测NLRP3、caspase-1、IL-1β表达;建模后28 d,利用Morris水迷宫检测各组大鼠行为学变化。 结果 HI组可见炎性细胞浸润、大量空泡结构,有髓鞘轴突数量较假手术组减少;与HI组相比,MSC-Exo组炎性细胞浸润减轻,仅见少量空泡结构,有髓鞘轴突数量增加;MCC950组细胞形态基本恢复正常。与假手术组相比,HI组MBP蛋白表达水平、平台穿越次数、目标象限停留时间减少(P<0.05),NLRP3、caspase-1、IL-1β阳性表达和蛋白表达水平、逃避潜伏期增加(P<0.05);与HI组相比,MSC-Exo组和MCC90组MBP蛋白表达水平、平台穿越次数、目标象限停留时间增加(P<0.05),NLRP3、caspase-1、IL-1β阳性表达和蛋白表达水平、逃避潜伏期减少(P<0.05)。 结论 MSC-Exo可通过靶向NLRP3炎症小体及促进少突胶质细胞成熟,减轻新生大鼠WMD。

Abstract

Objective To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). Methods Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze. Results In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05). Conclusions MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.

关键词

脑白质损伤 / 间充质干细胞 / 外泌体 / 核苷酸结合寡聚化结构域样受体蛋白3 / 新生大鼠

Key words

White matter damage / Mesenchymal stem cell / Exosome / Nucleotide-binding oligomerization domain-like receptor protein 3 / Neonatal rat

引用本文

导出引用
王超, 朱艳萍, 巴依尔才次克null, . 间充质干细胞来源外泌体通过靶向NLRP3炎症小体减轻新生大鼠脑白质损伤的研究[J]. 中国当代儿科杂志. 2025, 27(9): 1119-1127 https://doi.org/10.7499/j.issn.1008-8830.2504160
Chao WANG, Yan-Ping ZHU, Bayiercaicike, et al. Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(9): 1119-1127 https://doi.org/10.7499/j.issn.1008-8830.2504160

参考文献

[1]
Ge Y, Zhen F, Liu Z, et al. Alpha-asaronol alleviates dysmyelination by enhancing glutamate transport through the activation of PPARγ-GLT-1 signaling in hypoxia-ischemia neonatal rats[J]. Front Pharmacol, 2022, 13: 766744. PMCID: PMC8984140. DOI: 10.3389/fphar.2022.766744 .
[2]
Fang M, Lu L, Lou J, et al. FGF21 alleviates hypoxic-ischemic white matter injury in neonatal mice by mediating inflammation and oxidative stress through PPAR-γ signaling pathway[J]. Mol Neurobiol, 2025, 62(4): 4743-4768. DOI: 10.1007/s12035-024-04549-y .
[3]
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(6): 166117. DOI: 10.1016/j.bbadis.2021.166117 .
[4]
Nakao M, Nanba Y, Okumura A, et al. Fetal heart rate evolution and brain imaging findings in preterm infants with severe cerebral palsy[J]. Am J Obstet Gynecol, 2023, 228(5): 583.e1-583.e14. DOI: 10.1016/j.ajog.2022.11.1277 .
[5]
Huang Q, Tang J, Xiang Y, et al. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione rescues oligodendrocytes ferroptosis leading to myelin loss and ameliorates neuronal injury facilitating memory in neonatal hypoxic-ischemic brain damage[J]. Exp Neurol, 2025, 390: 115262. DOI: 10.1016/j.expneurol.2025.115262 .
[6]
Li Z, Zhang F, Huang L, et al. Akt/mTOR pathway agonist SC79 inhibits autophagy and apoptosis of oligodendrocyte precursor cells associated with neonatal white matter dysplasia[J]. Neurochem Res, 2024, 49(3): 670-683. PMCID: PMC10884134. DOI: 10.1007/s11064-023-04057-w .
[7]
De Palma ST, Hermans EC, Shamorkina TM, et al. Hypoxic preconditioning enhances the potential of mesenchymal stem cells to treat neonatal hypoxic-ischemic brain injury[J]. Stroke, 2025, 56(7): 1872-1882. PMCID: PMC12180708. DOI: 10.1161/STROKEAHA.124.048964 .
[8]
Chang YS, Yang M, Ahn SY, et al. Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders[J]. Stem Cells Transl Med, 2024, 13(10): 941-948. PMCID: PMC11465171. DOI: 10.1093/stcltm/szae060 .
[9]
Vinukonda G, La Gamma EF. Emerging therapies for brain recovery after IVH in neonates: cord blood derived mesenchymal stem cells (MSC) and unrestricted somatic stem cells (USSC)[J]. Semin Perinatol, 2022, 46(5): 151598. DOI: 10.1016/j.semperi.2022.151598 .
[10]
张军, 李明霞, 王超, 等. 不同剂量人脐带间充质干细胞移植对新生大鼠脑白质损伤的修复作用[J]. 中国当代儿科杂志, 2024, 26(4): 394-402. PMCID: PMC11057307. DOI: 10.7499/j.issn.1008-8830.2310081 .
[11]
Tapia-Bustos A, Lespay-Rebolledo C, Vío V, et al. Neonatal mesenchymal stem cell treatment improves myelination impaired by global perinatal asphyxia in rats[J]. Int J Mol Sci, 2021, 22(6): 3275. PMCID: PMC8004671. DOI: 10.3390/ijms22063275 .
[12]
Zhang X, Zhang Y, Peng X, et al. Targeting neuroinflammation in preterm white matter injury: therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cell Mol Neurobiol, 2025, 45(1): 23. PMCID: PMC11903990. DOI: 10.1007/s10571-025-01540-6 .
[13]
Gao X, Yang H, Xiao W, et al. Modified exosomal SIRPα variants alleviate white matter injury after intracerebral hemorrhage via microglia/macrophages[J]. Biomater Res, 2022, 26(1): 67. PMCID: PMC9701394. DOI: 10.1186/s40824-022-00311-4 .
[14]
Shao R, Sun D, Hu Y, et al. White matter injury in the neonatal hypoxic-ischemic brain and potential therapies targeting microglia[J]. J Neurosci Res, 2021, 99(4): 991-1008. DOI: 10.1002/jnr.24761 .
[15]
Song S, Hasan MN, Yu L, et al. Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury[J]. J Neuroinflammation, 2022, 19(1): 246. PMCID: PMC9533529. DOI: 10.1186/s12974-022-02608-6 .
[16]
Rivellini C, Porrello E, Dina G, et al. JAB1 deletion in oligodendrocytes causes senescence-induced inflammation and neurodegeneration in mice[J]. J Clin Invest, 2022, 132(3): e145071. PMCID: PMC8803330. DOI: 10.1172/JCI145071 .
[17]
Groh J, Abdelwahab T, Kattimani Y, et al. Microglia-mediated demyelination protects against CD8+ T cell-driven axon degeneration in mice carrying PLP defects[J]. Nat Commun, 2023, 14(1): 6911. PMCID: PMC10616105. DOI: 10.1038/s41467-023-42570-2 .
[18]
Xie D, Ma Y, Gao C, et al. Piezo1 activation on microglial cells exacerbates demyelination in sepsis by influencing the CCL25/GRP78 pathway[J]. Int Immunopharmacol, 2024, 142(Pt A): 113045. DOI: 10.1016/j.intimp.2024.113045 .
[19]
Paul S, Bhardwaj J, Binukumar BK. Cdk5-mediated oligodendrocyte myelin breakdown and neuroinflammation: Implications for the link between type 2 diabetes and Alzheimer's disease[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(2): 166986. DOI: 10.1016/j.bbadis.2023.166986 .
[20]
Micili SC, Engür D, Genc S, et al. Oxygen exposure in early life activates NLRP3 inflammasome in mouse brain[J]. Neurosci Lett, 2020, 738: 135389. DOI: 10.1016/j.neulet.2020.135389 .
[21]
Ran Y, Su W, Gao F, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2021, 2021: 1552127. PMCID: PMC8497115. DOI: 10.1155/2021/1552127 .
[22]
Huang J, Zhang L, Qu Y, et al. Histone acetylation of oligodendrocytes protects against white matter injury induced by inflammation and hypoxia-ischemia through activation of BDNF-TrkB signaling pathway in neonatal rats[J]. Brain Res, 2018, 1688: 33-46. DOI: 10.1016/j.brainres.2017.11.005 .
[23]
Yang L, Zhang Y, Yu X, et al. Periventricular microglia polarization and morphological changes accompany NLRP3 inflammasome-mediated neuroinflammation after hypoxic-ischemic white matter damage in premature rats[J]. J Immunol Res, 2023, 2023: 5149306. PMCID: PMC10460280. DOI: 10.1155/2023/5149306 .
[24]
Xiao L, Wang M, Shi Y, et al. Secondary white matter injury mediated by neuroinflammation after intracerebral hemorrhage and promising therapeutic strategies of targeting the NLRP3 inflammasome[J]. Curr Neuropharmacol, 2023, 21(3): 669-686. PMCID: PMC10207923. DOI: 10.2174/1570159X20666220830115018 .
[25]
Xiao L, Wang M, Shi Y, et al. Neuroinflammation-mediated white matter injury in Parkinson's disease and potential therapeutic strategies targeting NLRP3 inflammasome[J]. Int Immunopharmacol, 2024, 143(Pt 3): 113483. DOI: 10.1016/j.intimp.2024.113483 .
[26]
Liu Y, Fan H, Li X, et al. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination[J]. Exp Neurol, 2021, 337: 113593. DOI: 10.1016/j.expneurol.2020.113593 .
[27]
Huo L, Liu X, Wang H. Leukemia inhibitory factor attenuates hypoxic-ischemic white matter injury via NLRP3 inflammasome activity suppressing through the Nrf2/HO-1 pathway[J]. Front Biosci (Landmark Ed), 2025, 30(3): 36630. DOI: 10.31083/FBL36630 .
[28]
李美伶, 徐明. 外泌体对NLRP3炎症小体调控作用的研究进展[J]. 药学学报, 2025, 60(4): 853-863. DOI: 10.16438/j.0513-4870.2024-0909 .
[29]
Xu M, Don M, Chen Y, et al. Bone marrow mesenchymal stem cell-originated exosomes curb oxidative stress and pyroptosis triggered by ovarian ischemia/reperfusion via the TXNIP/NLRP3 inflammasome pathway[J]. Appl Biochem Biotechnol, 2025, 197(6): 3819-3840. DOI: 10.1007/s12010-025-05188-2 .
[30]
Liu X, Zhang M, Liu H, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes[J]. Exp Neurol, 2021, 341: 113700. DOI: 10.1016/j.expneurol.2021.113700 .
[31]
Gamage TKJB, Fraser M. The role of extracellular vesicles in the developing brain: current perspective and promising source of biomarkers and therapy for perinatal brain injury[J]. Front Neurosci, 2021, 15: 744840. PMCID: PMC8498217. DOI: 10.3389/fnins.2021.744840 .
[32]
Zhang H, Zhou LQ, Yang S, et al. The foam cell-derived exosomes exacerbate ischemic white matter injury via transmitting metabolic defects to microglia[J]. Cell Metab. PMID: DOI: 10.1016/j.cmet.2025.04.009 . Epub ahead of print.
[33]
Zhang Z, Yan J, Chen H, et al. Exosomal LncRNA TM7SF3-AU1 aggravates white matter injury via MiR-702-3p/SARM1 signaling after subarachnoid hemorrhage in rats[J]. Mol Neurobiol, 2024, 61(7): 4783-4803. DOI: 10.1007/s12035-023-03811-z .
[34]
Zhu Z, Meng M, Mo S, et al. M2 microglia-derived exosomal miR-144-5p attenuates white matter injury in preterm infants by regulating the PTEN/AKT pathway through KLF12[J]. Mol Biotechnol. PMID: DOI: 10.1007/s12033-025-01364-1 . Epub ahead of print.
[35]
Askari H, Yavarpour-Bali H, Shirzad M, et al. Combination therapy with exosomes and NLRP3 inhibition enhances myelin repair in a cuprizone-induced demyelination model[J]. Eur J Pharmacol, 2025, 1002: 177851. DOI: 10.1016/j.ejphar.2025.177851 .
[36]
Bi W, Mu X, Li Y, et al. Delivery of neurotrophin-3 by RVG-Lamp2b-modified mesenchymal stem cell-derived exosomes alleviates facial nerve injury[J]. Hum Cell, 2024, 37(5): 1378-1393. DOI: 10.1007/s13577-024-01086-7 .
[37]
Malige A, Gates C, Cook JL. Mesenchymal stem cells in orthopaedics: a systematic review of applications to practice[J]. J Orthop, 2024, 58: 1-9. PMCID: PMC11254590. DOI: 10.1016/j.jor.2024.06.026 .
[38]
Choudhery MS, Mahmood R, Harris DT, et al. Minimum criteria for defining induced mesenchymal stem cells[J]. Cell Biol Int, 2022, 46(6): 986-989. DOI: 10.1002/cbin.11790 .
[39]
González-Cubero E, González-Fernández ML, Gutiérrez-Velasco L, et al. Isolation and characterization of exosomes from adipose tissue-derived mesenchymal stem cells[J]. J Anat, 2021, 238(5): 1203-1217. PMCID: PMC8053584. DOI: 10.1111/joa.13365 .

脚注

所有作者声明不存在利益冲突。

基金

国家自然科学基金地区科学基金(82060288)
“青年科研起航”专项基金(2022YFY-QKQN-51)

编委: 杨丹

版权

版权所有 © 2023中国当代儿科杂志
PDF(2203 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/