脂多糖对大鼠脑微血管内皮细胞通透性的影响及机制研究

邓小鹿,何芳,彭镜,杨丽芬,张慈柳,向秋莲,吴丽文,王国丽,尹飞

中国当代儿科杂志 ›› 2011, Vol. 13 ›› Issue (11) : 908-911.

PDF(1053 KB)
PDF(1053 KB)
中国当代儿科杂志 ›› 2011, Vol. 13 ›› Issue (11) : 908-911.
论著·实验研究

脂多糖对大鼠脑微血管内皮细胞通透性的影响及机制研究

  • 邓小鹿,何芳,彭镜,杨丽芬,张慈柳,向秋莲,吴丽文,王国丽,尹飞
作者信息 +

Influence of lipopolysaccharide on the permeability of rat brain microvascular endothelial cells and the molecular mechanism

  • DENG Xiao-Lu, HE Fang, PENG Jing, YANG Li-Fen, ZHANG Ci-Liu, XIANG Qiu-Lian, WU Li-Wen, WANG Guo-Li, YIN Fei
Author information +
文章历史 +

摘要

目的:了解脂多糖(LPS)对大鼠脑微血管内皮细胞(BMECs)通透性的影响及其可能的机制。方法:分离和培养原代大鼠BMECs,随机分为对照组和LPS干预组。利用跨内皮细胞电阻抗检测 BMECs 屏障功能,Pull-down法测定RhoA活性,Western blot检测p115RhoGEF和紧密连接蛋白ZO-1、occludin、claudin-5的蛋白表达量。结果:与对照组(159.0±8.6 Ω?cm2)比较,LPS作用3 h后,大鼠BMECs 跨内皮细胞电阻抗值明显下降(108.3±4.2 Ω?cm2),作用12 h后达最低(85.4±2.5 Ω?cm2)。LPS作用5 min后RhoA明显活化,1 h后出现p115RhoGEF蛋白表达上调,3 h后紧密连接蛋白ZO-1、occludin和claudin-5的表达水平均不同程度下降,与对照组比较差异有统计学意义(P<0.05)。结论:LPS诱导大鼠BMECs中p115RhoGEF/RhoA信号通路活化,导致紧密连接蛋白表达水平降低,引起 BMECs 通透性增加。

Abstract

OBJECTIVE: To study the influence of lipopolysaccharide (LPS) on the permeability of rat brain microvascular endothelial cells (BMECs) and possible molecular mechanism. METHODS: Monolayers of primary rat BMECs were separated and cultured, and then treated with (LPS group) or without LPS (control group). The barrier integrity was measured by transendothelial electrical resistance (TEER) assay. The degrees of RhoA activation were determined by Pull-down assay. The expression levels of p115RhoGEF, zonula occludens-1 (ZO-1), occludin and claudin-5 proteins were detected by Western blot analysis. RESULTS: The average TEER values of rat BMECs in the LPS group were 108.3±4.2 Ω?cm2 and 85.4±2.5 Ω?cm2 respectively 3 and 12 hrs after LPS treatment, which were significantly lower than that in the control group (159.0±8.6 Ω?cm2). Compared with the control group, the activity of RhoA started to increase 5 minutes after LPS treatment, and the expression of p115RhoGEF protein started to increase 1 hr after LPS treatment and the cellular protein levels of ZO-1, occludin and claudin-5 decreased significantly 3 hrs after LPS treatment in the LPS group (P<0.05). CONCLUSIONS: LPS may activate the p115RhoGEF/RhoA pathway and decrease protein expression of ZO-1, occludin and claudin-5, resulting in an increased permeability of rat BMECs.

关键词

脂多糖 / 紧密连接 / 内皮细胞 / 大鼠

Key words

Lipopolysaccharide / Tight junction / Endothelial cell / Rats

引用本文

导出引用
邓小鹿,何芳,彭镜,杨丽芬,张慈柳,向秋莲,吴丽文,王国丽,尹飞. 脂多糖对大鼠脑微血管内皮细胞通透性的影响及机制研究[J]. 中国当代儿科杂志. 2011, 13(11): 908-911
DENG Xiao-Lu, HE Fang, PENG Jing, YANG Li-Fen, ZHANG Ci-Liu, XIANG Qiu-Lian, WU Li-Wen, WANG Guo-Li, YIN Fei. Influence of lipopolysaccharide on the permeability of rat brain microvascular endothelial cells and the molecular mechanism[J]. Chinese Journal of Contemporary Pediatrics. 2011, 13(11): 908-911
中图分类号: R-33   

参考文献

[1]何芳,尹飞,彭镜,邓小鹿,吴丽文,张慈柳. LPS诱导小鼠脑微血管内皮细胞通透性增高的分子机制[J]. 中南大学学报(医学版),2010,35(11):1129-1137.

[2]彭镜, 尹飞, 曾卫民, 甘娜, 张红媛.肿瘤坏死因子α对体外血脑屏障模型通透性的影响[J]. 中国组织工程研究与临床康复, 2007, 11(36):176-179.

[3]Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB. Protein kinase C alpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement[J]. J Biol Chem, 2003, 278(31):28793-28798.

[4]彭镜, 尹飞, 甘娜, 张红媛.体外血脑屏障模型的建立[J].中国当代儿科杂志, 2005, 7(6): 525-529.

[5]Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions[J].J Cell Biol, 1993, 123(6 Pt 2):1777-1788.

[6]Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells[J]. J Cell Physiol, 2007, 210(1):81-86.

[7]Chen F, Ohashi N, Li W, Eckman C, Nguyen JH. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure[J]. Hepatology, 2009, 50(6):1914-1923.

[8]Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(1):G308-G318.

[9]Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase)[J]. J Biol Chem, 1996, 271(34):20246-20249.

[9]Hart MJ, Sharma S, elMasry N, Qiu RG, McCabe P, Polakis P, et al. Identification of a novel guanine nucleotide exchange factor for the Rho GTPase[J]. J Biol Chem, 1996, 271(41): 25452-25458.

[10]Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, et al. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction[J]. FASEB J, 2004, 18(15):1578-1590.

[11]Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology[J]. J Mol Med, 2002, 80(10):629-638.

[12]Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S, et al. Regulation of tight junction permeability and occludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms[J]. J Biol Chem, 2001, 276(13):10423-10431.

PDF(1053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/