目的:探讨胰岛素样生长因子结合蛋白3(IGFBP3)启动子区甲基化状态在胎儿宫内生长受限(IUGR)中的作用。方法:选取IUGR新生儿50例及正常新生儿30例,应用甲基化特异性PCR(MSP)及高分辨率溶解(HRM)技术检测外周血中IGFBP3基因的甲基化状态。结果:IUGR组中IGFBP3启动子区完全甲基化比例为4%(2/50),部分甲基化比例为40%(20/50),未甲基化比例为56%(28/50);对照组中部分甲基化比例为13%(4/30),未甲基化比例为87%(26/30),两组甲基化率差异有统计学意义(P<0.01)。结论:IGFBP3基因启动子区的甲基化程度与IUGR的发生有关。
Abstract
OBJECTIVE: To study the role of promoter methylation of insulin-like growth factor binding protein 3 (IGFBP3) in intrauterine growth restriction (IUGR). METHODS: Fifty neonates with IUGR and 30 healthy neonates were enrolled. The promoter methylation status of IGFBP3 in peripheral blood was evaluated by methylation-specific PCR (MSP) and high resolution melting (HRM) techniques. RESULTS: The complete methylation rate, partial methylation rate and non-methylation rate of IGFBP3 promoter in the IUGR group was 4% (2/50), 40% (20/50) and 56% (28/50), respectively. The partial methylation rate and non-methylation rate of IGFBP3 promoter in the control group were 13% (4/30) and 87% (26/30), respectively. There were significant differences in the promoter methylation rate of IGFBP3 between the two groups (P<0.01). CONCLUSIONS: The promoter methylation of IGFBP3 gene is associated with the pathogenesis of IUGR.
关键词
胎儿宫内发育受限 /
胰岛素样生长因子结合蛋白3 /
甲基化 /
新生儿
Key words
Intrauterine growth restriction /
Insulin-like growth factor binding protein 3 /
Methylation /
Neonate
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Mamelle N, Bonid M, Rivière O, Joly MO, Mellier G, Maria B, et al. Identification of newborns with fetal growth restriction (FGR)in weight and/or length based on constitutional growth potential[J]. Eur J Pediatr, 2006, 165(10): 717-725.
[2]Bos AF, Einspieler C, Prechtl HF. Intrauterine growth retardation, general movements, and neurodevelopmental outcome: a review[J]. Dev Med Child Neurol, 2001,43(1):61-68.
[3]蒋晓敏,陶芳标. 胰岛素样生长因子系统与胎儿发育及其宫内编程[J]. 中国妇幼保健,2008,23(17):2468-2470.
[4]顾婷婷,张忠明,郑鹏生. DNA甲基化研究方法的回顾与评价[J]. 中国妇幼健康研究,2006,17(6):555-560.
[5]冯景,周有利,张吉才,陶建蜀. 甲基化特异性 PCR 全程易出现的问题与控制措施[J]. 检验医学,2006,2 1(4):437-438.
[6]Lorente A, Mueller W, Urdangarín E, L-zcoz P, von Deimling A, Castresana JS. Detection of methylation in promoter seguences by melting curve analysis-based semiguantitative real time PCR[J]. BMC Cancer, 2008, 8: 61.
[7]Turner CL, Mackay DM, Callaway JL, Docherty LE, Poole RL, Bullman H, et al. Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci[J]. Eur J Hum Genet, 2010, 18(6):648-655.
[8]Paquette J, Bessette B, Ledru E, Deal C. Identification of upstream stimulatory factor binding sites in the human IGFBP3 promoter and potential implication of adjacent singlenucleotide polymorphisms and responsiveness to insulin[J]. Endocrinology, 2007, 148(12):6007-6018.
[9]Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Fuchs CS, et al. IGFBP3 promoter methylation in colorectal cancer: relationship with microsatellite instability, CpG island methylator phenotype, and p53[J]. Neoplasia, 2007, 9(12): 1091-1098.
[10]Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development[J]. Proc Natl Acad Sci U S A, 2007, 104(32):13056-13061.
[11]Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring[J]. J Nutr, 2005,135(6):1382-1386.
[12]Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA, et al. Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction[J]. Hypertension, 2006, 47(5): 982-987.
[13]李玉华,文飞球. DNA甲基化与儿童白血病的临床研究进展[J]. 中国当代儿科杂志,2011,13(2):174-177.