Abstract:Congenital malformation is one of the most frequent causes of infant death in western countries and major cities in China. Though genetic screening of newborns remains a hot issue and concern, the mortality rate associated with birth defects has not been significantly reduced over the past 20 years. Many genetic diseases manifest symptoms during the first 28 days of life, but full clinical symptoms might not be evident in newborns. Moreover, genetic aberrations is highly heterogeneous. These complicated factors lead to the establishment of diagnosis based on nonspecific or obscure symptoms. Recently developed array comparative genomic hybridization (CGH) and next generation sequencing (NGS) techniques with efficient high-resolution allow to screening of the entire genome for DNA copy number variants and sequencing respectively. These new and powerful tools can shorten the differential diagnosis process and quicken to movement towards targeted treatment and genetic and prognostic counseling.
YANG Lin,WANG Hui-Jun,HUANG Guo-Ying et al. Advanced molecular technologies for the diagnosis of congenital malformation in neonates[J]. CJCP, 2013, 15(11): 960-964.
Rudan I, Chan KY, Zhang JS, Theodoratou E, Feng XL, Salomon JA, et al. Causes of deaths in children younger than 5 years in China in 2008[J]. Lancet, 2010, 375(9720): 1083-1089.
Dolk H, Loane M, Garne E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005[J]. Circulation, 2011, 123(8): 841-849.
[5]
Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies[J]. Arch Dis Child Fetal Neonatal Ed, 2005, 90(5): F355-F358.
[6]
Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units[J]. Sci Transl Med, 2012, 4(154): 135r-154r.
[7]
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome[J]. Science, 2004, 305(5683): 525-528.
[8]
Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome[J]. Nat Genet, 2004, 36(9): 949-951.
[9]
Rothberg JM, Leamon JH. The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008, 26(10): 1117-1124.
[10]
Shendure J, Ji H. Next-generation DNA sequencing[J]. Nat Biotechnol, 2008, 26(10): 1135-1145.
[11]
Hjortshoj TD, Gronskov K, Philp AR, Nishimura DY, Riise R, Sheffield VC, et al. Bardet-Biedl syndrome in Denmark-report of 13 novel sequence variations in six genes[J]. Hum Mutat, 2010, 31(4): 429-436.
[12]
Eichers ER, Lewis RA, Katsanis N, Lupski JR. Triallelic inheritance: a bridge between Mendelian and multifactorial traits[J]. Ann Med, 2004, 36(4): 262-272.
[13]
Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome[J]. Am J Hum Genet, 2003, 72(5): 1187-1199.
[14]
Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome[J]. Science, 2004, 305(5683): 525-528.
[15]
Diaz D ST, Sandgren J, Piotrowski A, Nord H, Andersson R, Menzel U, et al. Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32 K BAC-clone-based array[J]. Hum Mutat, 2008, 29(3): 398-408.
[16]
Mccarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation[J]. Nat Genet, 2008, 40(10): 1166-1174.
[17]
Sagoo GS, Butterworth AS, Sanderson S, Shaw-Smith C, Higgins J P, Burton H. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects[J]. Genet Med, 2009, 11(3): 139-146.
[18]
Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, et al. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases[J]. Mol Cytogenet, 2011, 4: 12.
[19]
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies[J]. Am J Hum Genet, 2010, 86(5): 749-764.
[20]
Ahn JW, Bint S, Bergbaum A, Mann K, Hall RP, Ogilvie CM. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals - results from four years' clinical application for over 8,700 patients[J]. Mol Cytogenet, 2013, 6(1): 16.
[21]
Zhang X, Snijders A, Segraves R, Zhang X, Niebuhr A, Albertson D, et al. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization[J]. Am J Hum Genet, 2005, 76(2): 312-326.
[22]
Strehle EM, Yu L, Rosenfeld JA, Donkervoort S, Zhou Y, Chen TJ, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region[J]. Am J Med Genet A, 2012, 158A(9): 2139-2151.
[23]
Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing[J]. Nat Methods, 2010, 7(2): 111-118.
[24]
American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: toward a uniform screening panel and system-executive summary[J]. Pediatrics, 2006, 117(5 Pt 2): S296-S307.
[25]
Downing GJ, Zuckerman AE, Coon C, Lloyd-Puryear M A. Enhancing the quality and efficiency of newborn screening programs through the use of health information technology[J]. Semin Perinatol, 2010, 34(2): 156-162.
[26]
Singh RH, Rohr F, Splett PL. Bridging evidence and consensus methodology for inherited metabolic disorders: creating nutrition guidelines[J]. J Eval Clin Pract, 2013, 19(4): 584-590.
De Keulenaer S, Hellemans J, Lefever S, Renard JP, De Schrijver J, Van de Voorde H, et al. Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform[J]. BMC Med Genomics, 2012, 5: 17.
[29]
Sbidian E, Feldmann D, Bengoa J, Fraitag S, Abadie V, de Prost Y, et al. Germline mosaicism in keratitis-ichthyosis-deafness syndrome: prenatal diagnosis in a familial lethal form[J]. Clin Genet, 2010, 77(6): 587-592.
[30]
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1): 57-63.
Mardis ER. The impact of next-generation sequencing technology on genetics[J]. Trends Genet, 2008, 24(3): 133-141.
[33]
Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower[J]. PLoS Biol, 2009, 7(4): e1000090.
[34]
van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis[J]. J Am Coll Cardiol, 2011, 58(21): 2241-2247.
[35]
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects[J]. Clin Genet, 2009, 75(5): 409-423.
[36]
Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and down syndrome: from genomics to pathophysiology[J]. Nat Rev Genet, 2004, 5(10): 725-738.
[37]
Pont SJ, Robbins JM, Bird TM, Gibson JB, Cleves MA, Tilford JM, et al. Congenital malformations among liveborn infants with trisomies 18 and 13[J]. Am J Med Genet A, 2006, 140(16): 1749-1756.
[38]
Goldmuntz E. DiGeorge syndrome: new insights[J]. Clin Perinatol, 2005, 32(4):963-978.
[39]
Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease[J]. Nature, 2013, 498(7453): 220-223.
[40]
Lo YM, Wittwer CT. Molecular diagnostics: at the cutting edge of translational research[J]. Clin Chem, 2009, 55(4): 601.