目的应用多重连接探针扩增技术(MLPA)检测亚端粒拷贝数变异,探讨遗传性智力障碍(ID)的发病机制。方法收集68例G-显带染色体核型分析结果正常的ID患儿,通过MLPA P036筛查亚端粒拷贝数变异。结果 68例患儿中检出亚端粒拷贝数异常者7例(10%),均为缺失突变,其中1例患儿涉及2个亚端粒的缺失变异,另1例患儿涉及4个亚端粒的缺失变异。结论亚端粒拷贝数变异是遗传性ID的重要病因;MLPA可作为研究遗传性ID患儿发病机制的经济、有效的方法。
Abstract
Objective To detect subtelomeric copy number variations in children with genetic intellectual disability (ID) using multiplex ligation-dependent probe amplification (MLPA), and to investigate the pathogenesis of genetic ID. Methods A total of 68 children with ID who had normal results of G-banding karyotype analysis were included in the study. Their subtelomeric copy number variations were detected using MLPA P036. Results Among the 68 children with ID, 7(10%) showed subtelomeric copy number variations, and all the variations were deletion mutations. Among them, 1 case carried 2 subtelomeric microdeletions, and 1 case carried 4 subtelomeric microdeletions. Conclusions Subtelomeric copy number variations are important causes of genetic ID. MLPA can be used as an economic and effective method for investigating the pathogenesis of genetic ID.
关键词
智力障碍 /
亚端粒 /
拷贝数变异 /
多重连接探针扩增 /
儿童
Key words
Intellectual disability /
Subtelomere /
Copy number variation /
Multiplex ligation-dependent probe amplification /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Medina A, Pineros L, Arteaga C, et al. Multiplex ligationdependent probe amplification to subtelomeric rearrangements in idiopathic intellectual disability in Colombia[J]. Pediatr Neurol, 2014, 50(3):250-254.
[2] Perou R, Bitsko RH, Blumberg SJ, et al. Mental health surveillance among children--United States, 2005-2011[J]. MMWR Surveill Summ, 2013, 62 Suppl 2:1-35.
[3] Michelson DJ, Shevell MI, Sherr EH, et al. Evidence report:Genetic and metabolic testing on children with global developmental delay:report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society[J]. Neurology, 2011, 77(17):1629-1635.
[4] 季涛云, 吴晔, 王静敏, 等. 检测不明原因智力障碍/脑发育迟缓儿染色体亚端粒重组突变[J]. 国际生殖健康/计划生育杂志, 2011, 30(3):173-177.
[5] Shevell M, Ashwal S, Donley D, et al. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society[J]. Neurology, 2003, 60(3):367-380.
[6] Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres[J]. Nat Rev Genet, 2002, 3(2): 91-102.
[7] Wu Y, Ji T, Wang J, et al. Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation[J]. BMC Med Genet, 2010, 11:72.
[8] Jehee FS, Takamori JT, Medeiros PF, et al. Using a combination of MLPA kits to detect chromosomal imbalances in patients with multiple congenital anomalies and mental retardation is a valuable choice for developing countries[J]. Eur J Med Genet, 2011, 54(4):e425-e432.
[9] 杨月华, 胡娅莉, 朱湘玉, 等. 多重连接探针扩增技术在先天性心脏病22q11微缺失/微重复综合征诊断中的应用[J]. 中国当代儿科杂志, 2009, 11(11):892-896.
[10] de Vries BB, Pfundt R, Leisink M, et al. Diagnostic genome profiling in mental retardation[J]. Am J Hum Genet, 2005, 77(4):606-616.
[11] Flint J, Wilkie AO, Buckle VJ, et al. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation[J]. Nat Genet, 1995, 9(2):132-140.