微阵列比较基因组杂交技术对不明原因智力低下/生长发育迟缓患儿的分子诊断

何玺玉, 陈晓春, 李然, 李培, 陆爱梅

中国当代儿科杂志 ›› 2015, Vol. 17 ›› Issue (5) : 459-463.

PDF(1224 KB)
HTML
PDF(1224 KB)
HTML
中国当代儿科杂志 ›› 2015, Vol. 17 ›› Issue (5) : 459-463. DOI: 10.7499/j.issn.1008-8830.2015.05.009
论著·临床研究

微阵列比较基因组杂交技术对不明原因智力低下/生长发育迟缓患儿的分子诊断

  • 何玺玉, 陈晓春, 李然, 李培, 陆爱梅
作者信息 +

Molecular diagnosis of children with unexplained intellectual disability/ developmental delay by array-CGH

  • HE Xi-Yu, CHEN Xiao-Chun, LI Ran, LI Pei, LU Ai-Mei
Author information +
文章历史 +

摘要

目的 分析不明原因智力低下(ID)和(或)生长发育迟缓(DD)患儿潜在的致病性基因组不平衡, 及其与表型的相关性, 探讨高密度微阵列比较基因组杂交技术(array-CGH)在临床分子遗传学诊断中的应用价值。方法 采用array-CGH技术对16例ID/DD患儿进行全基因组扫描分析, 并用多重连接探针扩增技术(MLPA)对检出的基因组不平衡异位进行验证。结果 16例患儿高分辨G显带核型分析均无异常。6例(38%)患儿存在基因拷贝数异常(CNVs), 其中3例CNVs为正常多态性改变; 1例CNVs涉及4p16.3区域微缺失, 考虑为Wolf-Hirschhorn综合征; 1例CNVs涉及7q11.23区域微缺失, 考虑为Williams-Beuren 综合征; 另1例CNVs临床意义不明确, 包含2个重复突变, 该突变与智力低下、脑发育迟缓、特殊面容、隐睾、牙列不齐等有关, 证实该CNVs具有临床意义。结论 通过array-CGH技术对不明原因ID/DD患儿进行全基因组扫描, 可为部分患儿明确病因诊断。该技术作为一种高通量、快速的疾病研究手段, 在ID/DD的病因诊断中具有重要的临床意义。

Abstract

Objective To analyze the potential pathogenic genomic imbalance in children with unexplained intellectual disability (ID) and/or developmental delay (DD) and its association with phenotypes, and to investigate the value of array-based comparative genomic hybridization (array-CGH) in clinical molecular genetic diagnosis.Methods The whole genome of 16 children with ID/DD was scanned by the array-CGH for detection of genomic copy number variations (CNVs), and the revealed genomic imbalance was confirmed by multiplex ligation-dependent probe amplification. Results G-band karyotyping of peripheral blood cells showed no abnormalities in the 16 children. The results of the array-CGH revealed that 6 (38%) of the 16 patients had genomic CNVs, and 3 cases of CNVs were normal polymorphic changes; 1 CNV was a microdeletion of 4p16.3, which was the critical region for Wolf-Hirschhorn syndrome, and 1 CNV was a microdeletion of 7q11.23, which was the critical region for Williams-Beuren syndrome. Moreover, a CNV was identified with two duplications at 2q22.2 and 15q21.3 in a boy, which proved to have a clinical significance due to its association with ID, brain DD, unusual facies, cryptorchidism, irregular dentition, etc. Conclusions Array-CGH allows for the etiological diagnosis in some of the children with unexplained ID/DD. As a high-throughput and rapid tool, it has a great clinical significance in the etiological diagnosis of ID/DD.

关键词

微阵列比较基因组杂交技术 / 智力低下 / 发育迟缓 / 基因组不平衡 / 儿童

Key words

Array-based comparative genomic hybridization / Intellectual disability / Developmental delay / Genomic imbalance / Child

引用本文

导出引用
何玺玉, 陈晓春, 李然, 李培, 陆爱梅. 微阵列比较基因组杂交技术对不明原因智力低下/生长发育迟缓患儿的分子诊断[J]. 中国当代儿科杂志. 2015, 17(5): 459-463 https://doi.org/10.7499/j.issn.1008-8830.2015.05.009
HE Xi-Yu, CHEN Xiao-Chun, LI Ran, LI Pei, LU Ai-Mei. Molecular diagnosis of children with unexplained intellectual disability/ developmental delay by array-CGH[J]. Chinese Journal of Contemporary Pediatrics. 2015, 17(5): 459-463 https://doi.org/10.7499/j.issn.1008-8830.2015.05.009

参考文献

[1] Jeevanandam L. Perspectives of intellectual disability in Asia: epidemiology, policy, and services for children and adults[J]. Curr Opin Psychiatry, 2009, 22(5): 462-468.
[2] Kwok HW, Chui EM. A survey on mental health care for adults with intellectual disabilities in Asia[J]. J Intellect Disabil Res, 2008, 52(11): 996-1002.
[3] Croen LA, Grether JK, Selvin S. The epidemiology of mental retardation of unknown cause[J]. Pediatrics, 2001, 107(6): E86.
[4] Rauch A, Hoyer J, Guth S, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation[J]. Am J Med Genet A, 2006, 140(19): 2063-2074.
[5] Novelli A, Ceccarini C, Bernardini L, et al. High frequency of subtelomeric rearrangements in a cohort of 92 patients with severe mental retardation and dysmorphism[J]. Clin Genet, 2004, 66(1): 30-38.
[6] Shaffer LG, Bejjani BA. Medical applications of array CGH and the transformation of clinical cytogenetics[J]. Cytogenet Genome Res, 2006, 115(3-4): 303-309.
[7] Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics[J]. Clin Genet, 2004, 66(6): 488-495.
[8] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders[M].Washington, DC: Alllerican Psychiatric Association, 2000.
[9] Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders[J]. Nat Genet, 2007, 39(7 Suppl): S48-54.
[10] Hulten MA, Dhanjal S, Pertl B. Rapid and simple prenatal diagnosis of common chromosome disorders: advantages and disadvantages of the molecular methods FISH and QF-PCR[J]. Reproduction, 2003, 126(3): 279-297.
[11] Shaffer LG, Bejjani BA, Torchia B, et al. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past,new technologies for the future[J]. Am J Med Genet C Semin Med Genet, 2007, 145C(4): 335-345.
[12] Dale RC, Grattan-Smith P, Nicholson M, et al. Microdeletions detected using chromosome microarray in children with suspected genetic movement disorders: a single-centre study[J]. Dev Med Child Neurol, 2012, 54(7): 618-623.
[13] Kurian MA. The clinical utility of chromosomal microarray in childhood neurological disorders[J]. Dev Med Child Neurol, 2012, 54(7): 582-583.
[14] Pickering DL, Eudy JD, Olney AH, et al. Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations[J]. Genet Med, 2008, 10(4): 262-266.
[15] Park SJ, Jung EH, Ryu RS, et al. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases[J]. Mol Cytogenet, 2011, 9(4): 12.
[16] Hart L, Rauch A, Carr AM, et al. LETM1 haploinsufficiency causes mitochondrial defects in cells from humans with Wolf-Hirschhorn syndrome: implications for dissecting the underlying pathomechanisms in this condition[J]. Dis Model Mech, 2014, 7(5): 535-545.
[17] Cyr AB, Nimmakayalu M, Lonmuir SQ, et al. A novel 4p16.3 microduplication distal to WHSC1 and WHSC2 characterized by oligonucleotide array with new phenotypic features[J]. Am J Med Genet A, 2011, 155A(9): 2224-2228.
[18] Hannelie E, Jasper JS, Ruben S, et al. Wolf-Hirschhorn syndrome facial dysmorphic features in a patient with a terminal 4p16.3 deletion telomeric to the WHSCR and WHSCR 2 regions[J]. Eur J Hum Genet, 2009, 17(1): 129-132.
[19] Hammond P, Hannes F, Suttie M, et al. Fine-grained facial phenotype-genotype analysis in Wolf-Hirschhorn syndrome[J]. Eur J Hum Genet, 2012, 20(1): 33-40.
[20] Martens MA, Wilson SJ, Reutens DC. Research review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype[J]. J Child Psychol Psych, 2008, 49(6): 576-608.
[21] Lisa E, Aaron P, Sherly P, et al. An atypical deletion of the Williams-Beuren syndrome interval implicates genes associated with defective visuospatial processing and autism[J]. J Med Genet, 2007, 44(2): 136-143.
[22] Mulatinho MV, de Carvalho Serao CL, Scalco F, et al. Severe intellectual disability, omphalocele, hypospadia and high blood pressure associated to a deletion at 2q22.1q22.3: case report[J]. Mol Cytogenet, 2012, 5(1): 30.
[23] Lynn M, Shah N, Conroy J, et al. A study of alveolar rhabdomyosarcoma copy number alterations by single nucleotide polymorphism analysis[J]. Appl Immunohistochem Mol Morphol, 2014, 22(3): 213-221.
[24] Timms AE, Dorschner MO, Wechsler J, et al. Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families[J]. JAMA Psychiatry, 2013, 70(6): 582-590.
[25] Ahn JW, Mann K, Walsh S, et al. Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance[J]. Mol Cytogenet, 2010, 15(3): 9.
[26] Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies[J]. Am J Hum Genet, 2010, 86(5): 749-764.
[27] Shoukier M, Klein N, Auber B, et al. Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants?[J]. Clin Genet, 2013, 83(1): 53-65.

基金

国家科技支撑计划(2013BAI12B00)。

PDF(1224 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/