目的 探讨川崎病(Kawasaki disease, KD)急性期患儿的血清氧化磷脂(oxidized phospholipids, OxPLs)和内皮一氧化氮合酶(endothelial nitric oxide synthase, eNOS)水平的变化,分析血清OxPLs和eNOS水平与冠状动脉病变(coronary artery lesion, CAL)的相关性,并探讨其临床意义。 方法 前瞻性选择95例急性期KD患儿作为KD组,根据是否合并CAL分为CAL亚组和非冠状动脉病变(non-coronary artery lesion, NCAL)亚组;另外选取同期30例仅下呼吸道感染发热患儿作为发热组,30例健康体检儿童作为健康对照组。比较各组一般资料及血清OxPLs、eNOS等实验室指标的差异,分析血清OxPLs和eNOS的相关性。 结果 KD组OxPLs水平高于发热组及健康对照组(P<0.05),eNOS水平低于发热组及健康对照组(P<0.05)。KD患儿治疗后较治疗前血清OxPLs下降,血清eNOS上升(P<0.05)。CAL亚组血清OxPLs高于NCAL亚组(P<0.05),血清eNOS水平低于NCAL亚组(P<0.05)。KD组患儿OxPLs与eNOS水平呈负相关(rs=-0.353, P<0.05)。 结论 KD急性期血清OxPLs、eNOS参与了CAL发展,可成为预测KD患儿发生CAL的生物标志物。
Abstract
Objective To investigate the changes in the serum levels of oxidized phospholipids (OxPLs) and endothelial nitric oxide synthase (eNOS) and their association with coronary artery disease (CAL) in children in the acute stage of Kawasaki disease (KD), as well as the clinical significance of OxPLs and eNOS. Methods A prospective study was conducted on 95 children in the acute stage of KD (KD group). According to the presence of absence of CAL, the KD group was further divided into a CAL subgroup and a non-CAL (NCAL) subgroup. Thirty children with fever due to lower respiratory tract infection were enrolled as the fever group. Thirty healthy children who underwent physical examination were enrolled as the healthy control group. The above groups were compared in terms of general information and serum levels of OxPLs, eNOS and other laboratory indexes, and the correlation between OxPLs level and eNOS level was analyzed. Results The KD group had a significantly higher level of OxPLs and a significantly lower level of eNOS compared with the fever group and the healthy control group (P<0.05). After treatment, the children with KD had a significantly decreased OxPLs level and a significantly increased eNOS level (P<0.05). Compared with the NCAL subgroup, the CAL subgroup had a significantly higher level of OxPLs and a significantly lower level of eNOS (P<0.05). Among the children of KD, the level of OxPLs was negatively correlated with that of eNOS (rs=-0.353, P<0.05). Conclusions Serum OxPLs and eNOS in the acute stage of KD may be involved in the development of CAL in children with KD, and therefore, they may be used as the biomarkers to predict CAL in these children.
关键词
川崎病 /
冠状动脉病变 /
血清型氧化磷脂 /
内皮一氧化氮合酶 /
儿童
Key words
Kawasaki disease /
Coronary artery lesion /
Serum oxidized phospholipid /
Endothelial nitric oxide synthase /
Child
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 F?rstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ Res, 2017, 120(4): 713-735. PMID: 28209797. DOI: 10.1161/CIRCRESAHA.116.309326.
2 何方园, 何学华, 袁勇华, 等. 川崎病急性期血脂与年龄、冠状动脉病变及严重程度的关系[J]. 临床儿科杂志, 2023, 41(6): 455-458. DOI: 10.12372/jcp.2023.22e1030.
3 Dunn S, Vohra RS, Murphy JE, et al. The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease[J]. Biochem J, 2008, 409(2): 349-355. PMID: 18092947. DOI: 10.1042/BJ20071196.
4 Tsimikas S, Mallat Z, Talmud PJ, et al. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events[J]. J Am Coll Cardiol, 2010, 56(12): 946-955. PMID: 20828647. DOI: 10.1016/j.jacc.2010.04.048.
5 Yu X, Hirono K I, Ichida F, et al. Enhanced iNOS expression in leukocytes and circulating endothelial cells is associated with the progression of coronary artery lesions in acute Kawasaki disease[J]. Pediatr Res, 2004, 55(4): 688-694. PMID: 14764920. DOI: 10.1203/01.PDR.0000113464.93042.A4.
6 中华医学会儿科学分会心血管学组, 中华医学会儿科学分会风湿学组, 中华医学会儿科学分会免疫学组, 等. 川崎病诊断和急性期治疗专家共识[J]. 中华儿科杂志, 2022, 60(1): 6-13. PMID: 34986616. DOI: 10.3760/cma.j.cn112140-20211018-00879.
7 中华医学会儿科学分会心血管学组, 中华儿科杂志编辑委员会. 川崎病冠状动脉病变的临床处理建议(2020年修订版)[J]. 中华儿科杂志, 2020, 58(9): 718-724. PMID: 32872711. DOI: 10.3760/cma.j.cn112140-20200422-00421.
8 周翠臻, 宋思瑞, 陈丽琴, 等. 川崎病合并冠状动脉瘤危险因素分析[J]. 临床儿科杂志, 2023, 41(7): 498-501. DOI: 10.12372/jcp.2023.23e0285.
9 刘翠, 刘小红, 吴岳, 等. 川崎病儿童冠脉病变的影响因素分析[J]. 西安交通大学学报(医学版), 2022, 43(6): 845-849. DOI: 10.7652/jdyxb202206008.
10 Borzutzky A, Gutiérrez M, Talesnik E, et al. High sensitivity C-reactive protein and endothelial function in Chilean patients with history of Kawasaki disease[J]. Clin Rheumatol, 2008, 27(7): 845-850. PMID: 18071779. DOI: 10.1007/s10067-007-0808-6.
11 赵敏, 刘伯言, 秦树存. 氧化磷脂与动脉粥样硬化[J]. 生理学报, 2021, 73(1): 69-81. PMID: 33665662. DOI: 10.13294/j.aps.2020.0057.
12 Lubrano V, Balzan S. LOX-1 and ROS, inseparable factors in the process of endothelial damage[J]. Free Radic Res, 2014, 48(8): 841-848. PMID: 24886290. DOI: 10.3109/10715762.2014.929122.
13 Nakashima Y, Sakai Y, Mizuno Y, et al. Lipidomics links oxidized phosphatidylcholines and coronary arteritis in Kawasaki disease[J]. Cardiovasc Res, 2021, 117(1): 96-108. PMID: 31782770. DOI: 10.1093/cvr/cvz305.
14 Wu F, Wilson JX. Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction[J]. Cardiovasc Res, 2009, 81(1): 38-45. PMID: 18791203. PMCID: PMC2605194. DOI: 10.1093/cvr/cvn246.
15 ?uczak A, Madej M, Kasprzyk A, et al. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases[J]. Oxid Med Cell Longev, 2020, 2020: 1417981. PMID: 32351667. PMCID: PMC7174952. DOI: 10.1155/2020/1417981.
16 Law SH, Chan ML, Marathe GK, et al. An updated review of lysophosphatidylcholine metabolism in human diseases[J]. Int J Mol Sci, 2019, 20(5): 1149. PMID: 30845751. PMCID: PMC6429061. DOI: 10.3390/ijms20051149.
17 Gharavi NM, Baker NA, Mouillesseaux KP, et al. Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids[J]. Circ Res, 2006, 98(6): 768-776. PMID: 16497987. DOI: 10.1161/01.RES.0000215343.89308.93.
18 Gradinaru D, Borsa C, Ionescu C, et al. Oxidized LDL and NO synthesis: biomarkers of endothelial dysfunction and ageing[J]. Mech Ageing Dev, 2015, 151: 101-113. PMID: 25804383. DOI: 10.1016/j.mad.2015.03.003.
19 Agarwal S, Agrawal DK. Kawasaki disease: etiopathogenesis and novel treatment strategies[J]. Expert Rev Clin Immunol, 2017, 13(3): 247-258. PMID: 27590181. PMCID: PMC5542821. DOI: 10.1080/1744666X.2017.1232165.
20 Yu D, Liao JK. Emerging views of statin pleiotropy and cholesterol lowering[J]. Cardiovasc Res, 2022, 118(2): 413-423. PMID: 33533892. PMCID: PMC8803071. DOI: 10.1093/cvr/cvab032.
21 Chen WH, Chen CH, Hsu MC, et al. Advances in the molecular mechanisms of statins in regulating endothelial nitric oxide bioavailability: interlocking biology between eNOS activity and L-arginine metabolism[J]. Biomed Pharmacother, 2024, 171: 116192. PMID: 38262153. DOI: 10.1016/j.biopha.2024.116192.
22 Philippova M, Resink T, Erne P, et al. Oxidised phospholipids as biomarkers in human disease[J]. Swiss Med Wkly, 2014, 144: w14037. PMID: 25539162. DOI: 10.4414/smw.2014.14037.
基金
长沙市科技计划项目(No.kq1801091)。