高氧致慢性肺疾病新生大鼠肺组织中ERK1/2变化的研究

胡瑜,刘雪雁,富建华,薛辛东

中国当代儿科杂志 ›› 2011, Vol. 13 ›› Issue (7) : 581-585.

PDF(1493 KB)
PDF(1493 KB)
中国当代儿科杂志 ›› 2011, Vol. 13 ›› Issue (7) : 581-585.
论著·实验研究

高氧致慢性肺疾病新生大鼠肺组织中ERK1/2变化的研究

  • 胡瑜,刘雪雁,富建华,薛辛东
作者信息 +

Expression of ERK1/2 protein in lung tissues of newborn rats with hyperoxia-induced chronic lung disease

  • HU Yu, LIU Xue-Yan, FU Jian-Hua, XUE Xin-Dong
Author information +
文章历史 +

摘要

目的:探讨细胞外信号调节激酶(ERK)1/2在高氧致慢性肺疾病(CLD)新生大鼠肺组织中的表达及作用。方法:将48 只新生Wistar大鼠随机分为高氧组和对照组,每组 24 只。高氧组生后即置于氧箱中,维持氧浓度为 0.90,诱导CLD;对照组生后置于空气中。于生后3 d、7 d和14 d采集肺组织标本,应用免疫组化、Western blot及Real-time PCR方法检测ERK1/2蛋白及mRNA表达,同时测定肺组织纤维化评分。结果:免疫组化及Western blot结果显示7 d、14 d时高氧组肺组织p-ERK1/2蛋白的表达均明显高于同时间点对照组(P<0.01)。Western blot结果同时显示各组间ERK1/2总蛋白的表达差异无统计学意义。Real-time PCR结果表明各组间ERK1、ERK2 mRNA水平差异无统计学意义(P>0.05)。结论:新生大鼠持续吸入高氧后,ERK1/2蛋白磷酸化活化,参与了高氧致CLD肺纤维化的形成过程。

Abstract

OBJECTIVE: To study the expression of extracellular signal regulated protein kinase (ERK) 1/2 in lung tissues of newborn rats with chronic lung disease (CLD) caused by hyperoxia. METHODS: Forty-eight full-term newborn rats were randomly divided into two groups: hyperoxia and control. The two groups were exposed to a hyperoxic gas mixture (0.90 O2) for an induction of CLD and room air within 12 hrs after birth, respectively. The levels of ERK1/2 protein and mRNA in lung tissues were measured using immunohistochemistry, Western blot and real-time PCR methods on postnatal days 3, 7 and 14. The severity of pulmonary fibrosis was evaluated. RESULTS: The expression of p-ERK protein in lung tissues in the hyperoxia group was significantly higher than that in the control group on postnatal days 7 and 14 (P<0.01). There were no significant differences in the levels of total ERK1/2 protein and ERK1/2 mRNA. CONCLUSIONS: The activation of phosphorated ERK1/2 may lead to lung fibrosis caused by hyperoxia in newborn rats.

关键词

高氧 / 慢性肺疾病 / 细胞外信号调节激酶 / 新生大鼠

Key words

Hyperoxia / Chronic lung disease / Extracellular signal regulated protein kinase / Newborn rats

引用本文

导出引用
胡瑜,刘雪雁,富建华,薛辛东. 高氧致慢性肺疾病新生大鼠肺组织中ERK1/2变化的研究[J]. 中国当代儿科杂志. 2011, 13(7): 581-585
HU Yu, LIU Xue-Yan, FU Jian-Hua, XUE Xin-Dong. Expression of ERK1/2 protein in lung tissues of newborn rats with hyperoxia-induced chronic lung disease[J]. Chinese Journal of Contemporary Pediatrics. 2011, 13(7): 581-585
中图分类号: R-33   

参考文献

[1]Hayes D Jr, Feola DJ, Murphy BS, Shook LA, Ballard HO. Pathogenesis of bronchopulmonary dysplasia[J]. Respiration, 2010, 79(5):425-436.

[2]Coalson JJ. Pathology of bronchopulmonary dysplasia[J]. Semin Perinatol, 2006,  30(4):179-184.

[3]Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochim Biophys Acta, 2010, 1802(4):396-405.

[4]Jeon GW, Sung DK, Jung YJ, Koo SH, Choi SH, Chang YS, et al. Granulocyte colony stimulating factor attenuates hyperoxia-induced lung injury by down-modulating inflammatory responses in neonatal rats[J]. Yonsei Med J, 2011, 52(1):65-73.

[5]Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4):467-470.

[6]Li LF, Liao SK, Huang CC, Hung MJ, Quinn DA. Serine/threonine kinase-protein kinase B and extracellar signal-regulated kinase regulate ventilatorinduced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment[J]. Crit Care, 2008, 12(4):R103.

[7]Ko JC, Wang YT, Yang JL. Dual and opposing roles of ERK in regulating G(1) and S-G(2)/M delays in A549 cells caused by hyperoxia[J]. Exp Cell Res, 2004, 297(2):472-483.

[8]Davies PL, Spiller OB, Beeton ML, Maxwell NC, Remold-O'Donnell E, Kotecha S. Relationship of proteinases and proteinase inhibitors with microbial presence in chronic lung disease of prematurity[J]. Thorax, 2010, 65(3):246-251.

[9]Dasgupta C, Sakurai R, Wang Y, Guo P, Ambalavanan N, Torday JS, et al. Hyperoxia-induced neonatal rat lung injury involves activation of TGF-beta and Wnt signaling and is protected by rosiglitazone[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 296(6):L1031-L1041.

[10]Maeda-Yamamoto M, Suzuki N, Sawai Y, Miyase T, Sano M, Hashimoto-Ohta A, et al. Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells[J]. J Agric Food Chem, 2003, 51(7):1858-1863.

[11]Asano K, Shikama Y, Shoji N, Hirano K, Suzaki H, Nakajima H. Tiotropium bromide inhibits TGF-β-induced MMP production from lung fibroblasts by interfering with Smad and MAPK pathways in vitro[J]. Int J Chron Obstruct Pulmon Dis, 2010, 5:277-286.

[12]Jiang HD, Guan HS. MS80, a novel sulfated oligosaccharide, inhibites pulmonary fibrosis by targeting TGF-beta1 both in vitro and in vivo[J]. Acta Pharmacol Sin, 2009, 30(7):973-979.

[13]Ranganathan AC, Nelson KK, Rodriguez AM, Kim KH, Tower GB, Rutter JL, et al. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2dependent ERK1/2 activation[J]. J Biol Chem, 2001, 276(17):14264-14270.

[14]Fang LP, Lin Q, Tang CS, Liu XM. Hydrogen sulfide suppresses migration, proliferation and myofibroblast transdifferentiation of human lung fibroblasts[J]. Pulm Pharmacol Ther, 2009, 22(6):554-561.

[15]Lin Q, Fang LP, Zhou WW, Liu XM. Rosiglitazone inhibits migration, proliferation, and phenotypic differentiation in cultured human lung fibroblasts[J]. Exp Lung Res, 2010, 36(2):120-128.

PDF(1493 KB)

Accesses

Citation

Detail

段落导航
相关文章

/