目的:探讨生长追赶宫内发育迟缓(IUGR)大鼠早期糖脂代谢及脂肪细胞功能的改变。方法:母孕期饥饿法建立IUGR大鼠模型。禁食组仔鼠作为生长追赶IUGR模型组(IUGR组),正常喂养仔鼠作为对照组(AGA组)。12周龄时检测血浆甘油三酯(TG)、胆固醇(TC)、低密度脂蛋白-C(LDL-C)、高密度脂蛋白-C(HDL-C)以及脂联素、促酰化刺激蛋白(ASP)的水平。隔日行糖耐量试验(OGTT),检测血浆葡萄糖和胰岛素水平,计算胰岛素抵抗指数(IRI)。随后仔鼠断头处死,共聚焦显微镜下观察免疫荧光染色的成熟脂肪细胞中葡萄糖转运体-4(GLUT-4)的表达。结果:12周末时IUGR组大鼠体重、BMI显著高于AGA组(均P<0.01),血TG、TC、LDL-C水平显著高于AGA组,HDL-C水平明显低于AGA组(P<0.05)。OGTT中IUGR组注射葡萄糖后各时间点血糖水平均高于AGA组(P<0.05),IRI值亦显著增高(P<0.05)。与AGA组比较,IUGR组ASP水平明显升高(P<0.05),而脂联素水平显著降低(P<0.05)。IUGR大鼠成熟脂肪组织中GLUT-4在基础状态和不同浓度胰岛素刺激下的表达水平与AGA组相比均明显降低(P<0.05)。结论:IUGR大鼠生后发生明显的生长追赶,12周时即存在高血脂、高血糖及胰岛素抵抗。脂肪细胞分泌功能的异常和脂肪组织GLUT-4表达水平的降低可能参与了生长追赶IUGR大鼠胰岛素抵抗的形成。
Abstract
OBJECTIVE: To study changes of glycolipid metabolism and adipocyte function in an catch-up growth intrauterine growth retardation (IUGR) rat model. METHODS: IUGR rat model was established by maternal nutrition restriction during pregnancy. Newborn IUGR pups were used as IUGR group, and normal newborn pups were used as control group (appropriate for gestational age, AGA group). At age of 12 weeks, plasma samples were collected for the test of triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), adiponectin and acylation stimulating protein (ASP). Oral glucose tolerance test (OGTT) was performed for the test of glucose and insulin levels, and insulin resistance index (IRI) was calculated. Expression of glucose transfer 4 (GLUT-4) in adipocytes was examined by confocal microscopy. RESULTS: Body weight and BMI in the IUGR group were significantly higher than in the AGA group by 12 weeks (P<0.01), and plasma TC, TG and LDL-C levels in the IUGR group were higher than in the AGA group, but HDL-C was lower (P<0.05). In the OGTT test, blood glucose level and IRI score in the IUGR group were higher than in the AGA group (P<0.05). Compared with the AGA group, the IUGR group had a higher ASP level (P<0.05) and a lower adiponection level (P<0.05). GLUT4 expression in the adipocytes was significantly lower in the IUGR group than in the AGA group (P<0.05). CONCLUSIONS: Catch-up growth may be obviously noted in IUGR rats after birth. Both hyperlipidaemia and insulin resistance occur at age of 12 weeks. Dysfunction of adipocytes decreased expression of GLUT-4 may be risk factors for insulin resistance in IUGR rats.
关键词
宫内发育迟缓 /
胰岛素抵抗 /
脂肪细胞 /
生长追赶 /
大鼠
Key words
Intrauterine growth retardation /
Insulin resistance /
Adipocyte /
Catch-up growth /
Rats
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Saenger P, Czernichow P, Hughes I, Reiter EO. Small for gestational age: short stature and beyond[J]. Endocr Rev, 2007, 28(2): 219-251.
[2]Barker DJ. The fetal and infant origins of adult disease[J]. BMJ, 1990, 301(6761): 1111.
[3]Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth[J]. Diabetologia, 1993, 36(1): 62-67.
[4]王谦,应艳琴,宁琴,罗小平. 胰岛素受体底物在宫内发育迟缓新生鼠肌肉组织中的表达及意义[J]. 实用儿科临床杂志,2006,21(8):460-462.
[5]Cushman SW. Structure-function relationships in the adipose cell. I. Ultrastructure of the isolated adipose cell[J]. J Cell Biol, 1970, 46(2): 326-341.
[6]Zhang HH, Kumar S, Barnett AH, Eqqo MC. Ceiling culture of mature human adipocytes: use in studies of adipocyte functions[J]. J Endocrinol, 2000, 164(2): 119-128.
[7]柯志勇,刘军,丘小汕. 三种宫内发育迟缓大鼠模型方法的比较[J]. 中国当代儿科杂志,2000,2(1): 24-26.
[8]周跟来,陈才勇,王恬. 胎儿宫内发育迟缓的动物模型[J]. 中国比较医学杂志,2003,13(2):117-120.
[9]Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study[J]. BMJ, 2000, 320(7240): 967-971.
[10]Hediger ML, Overpeck MD, Maurer KR, Kuczmarski RJ, McGlynn A, Davis WW. Growth of infants and young children born small or large for gestational age: findings from the Third National Health and Nutrition Examination Survey[J]. Arch Pediatr Adolesc Med, 1998, 152(12): 1225-1231.
[11]Dulloo AG. Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance[J]. Best Pract Res Clin Endocrinol Metab, 2008, 22(1): 155-171.
[12]Adair LS, Cole TJ. Rapid child growth raises blood pressure in adolescent boys who were thin at birth[J]. Hypertension, 2003, 41(3): 451-456.
[13]Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity [J]. BMJ, 2005, 331(7522): 929.
[14]Botero D, Lifshitz F. Intrauterine growth retardation and long-term effects on growth[J]. Curr Opin Pediatr, 1999, 11 (4): 340-347.
[15]Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults[J]. N Engl J Med, 2005, 353(17): 1802-1809.
[16]Chen L, Nyomba BL. Whole body insulin resistance in rat offspring of mothers consuming alcohol during pregnancy or lactation: comparing prenatal and postnatal exposure[J]. J Appl Physiol, 2004, 96(1): 167-172.
[17]Forsén T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D. The fetal and childhood growth of persons who develop type 2 diabetes[J]. Ann Intern Med, 2000, 133(3): 176-182.
[18]Liao L, Zheng R, Wang C, Gao J, Ying Y, Ning Q, et al. The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats[J]. Pediatr Res, 2011, 69(6): 497-503.
[19]FnautzziG. Adipose tissue, adipokines, and inflamation[J]. J Allergy Clin Immunol, 2005, 115(5): 911-919.
[20]Trujillo ME, Scherer PE. Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic syndrome[J]. J Intern Med, 2005, 257(2): 167-175.
[21]Cianflone KM, Sniderman AD, Walsh MJ, Vu HT, Gagnon J, Rodriguez MA. Purification and characterization of acylation stimulating protein[J]. J Bio Chem, 1989, 264(1): 426-430.
[22]高金枝,郑锐丹,王成斌,应艳琴,罗小平. PI3K抑制剂LY294002对鼠前脂肪细胞分化和C/EBPα及PPARγ表达的影响[J]. 中国当代儿科杂志,2011,13(10):823-826