小分子RNA在先天性心脏病中的研究进展

严华林, 华益民

中国当代儿科杂志 ›› 2014, Vol. 16 ›› Issue (10) : 1070-1074.

PDF(1428 KB)
HTML
PDF(1428 KB)
HTML
中国当代儿科杂志 ›› 2014, Vol. 16 ›› Issue (10) : 1070-1074. DOI: 10.7499/j.issn.1008-8830.2014.10.024
综述

小分子RNA在先天性心脏病中的研究进展

  • 严华林1,2, 华益民1,3
作者信息 +

Research advances on role of microRNAs in congenital heart diseases

  • YAN Hua-Lin1,2, HUA Yi-Min1,3
Author information +
文章历史 +

摘要

小分子RNA(miRNAs)是一类在转录后水平调控基因表达的小分子非编码RNA。它们具有进化保守性、组织细胞特异性和核酸杂交高度特异性。miRNAs 在心肌细胞的增殖、分化和凋亡、心脏神经嵴细胞的迁移、心脏形态发生和心脏图式发育等诸多过程中扮演着重要角色,可为先天性心脏病发生机制的阐明提供一种全新的视角。miRNAs 在先天性心脏病发生机制中的研究可分为临床研究和动物研究两类,该文就这两类研究的研究进展及其研究结论对先天性心脏病机制的阐释以及目前国内研究的现状和局限等方面进行综述。

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs, which mainly regulate gene expression through post-transcriptional process. They are highly conserved, tissue-specific and highly specific in miRNA-binding on 3’-untranslated regions. MicroRNAs have been identified as crucial regulators in myocardial cell proliferation, differentiation and apoptosis, migration of cardiac neural crest cells, cardiac morphogenesis and cardiac patterning processes, which may provide a new insight into the research on developmental mechanism of congenital heart diseases. The research on miRNAs in congenital heart diseases includes clinical research and animal experiments. This article reviews two types of research advances, the mechanism of congenital heart diseases, and the current status and limitation of the domestic reports.

关键词

小分子RNA / 先天性心脏病 / 心脏发育

Key words

MicroRNAs / Congenital heart disease / Cardiac development

引用本文

导出引用
严华林, 华益民. 小分子RNA在先天性心脏病中的研究进展[J]. 中国当代儿科杂志. 2014, 16(10): 1070-1074 https://doi.org/10.7499/j.issn.1008-8830.2014.10.024
YAN Hua-Lin, HUA Yi-Min. Research advances on role of microRNAs in congenital heart diseases[J]. Chinese Journal of Contemporary Pediatrics. 2014, 16(10): 1070-1074 https://doi.org/10.7499/j.issn.1008-8830.2014.10.024

参考文献

[1] Hoffman JI, Kaplan S. The incidence of congenital heartdisease[J]. J Am Coll Cardiol, 2002, 39(12): 1890-1900.
[2] 中华人民共和国国家卫生和计划生育委员会. 中国出生缺陷防治报告(2012). [DB/OL] (2012-09-12) http://www.gov.cn/gzdt/att/att/site1/20120912/1c6f6506c7f811bacf9301.pdf.
[3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, andfunction[J]. Cell, 2004, 116(2): 281-297.
[4] Yates LA, Norbury CJ, Gilbert RJ. The long and short ofmicroRNA[J]. Cell, 2013, 153(3): 516-519.
[5] Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression inhuman heart disease[J]. Physiol Genomics, 2007, 31(3): 367-373.
[6] Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure[J]. Circ Res, 2013, 113(6): 676-689.
[7] Kim GH. MicroRNA regulation of cardiac conduction andarrhythmias[J]. Transl Res, 2013, 161(5): 381-392.
[8] Pan W, Zhong Y, Cheng C, et al. MiR-30-regulated autophagymediates angiotensin II-induced myocardial hypertrophy[J].PLoS One, 2013, 8(1): e53950.
[9] Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis,cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129(2): 303-317.
[10] Boettger T, Braun T. A new level of complexity: the role ofmicroRNAs in cardiovascular development[J]. Circ Res, 2012,110(7): 1000-1013.
[11] Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primarymicroRNA precursors by the nuclear processing enzymeDrosha[J]. EMBO J, 2005, 24(1): 138-148.
[12] Faller M, Toso D, Matsunaga M, et al. DGCR8 recognizesprimary transcripts of microRNAs through highly cooperativebinding and formation of higher-order structures[J]. RNA, 2010,16(8): 1570-1583.
[13] Barr I, Smith AT, Senturia R, et al. DiGeorge critical region 8(DGCR8) is a double-cysteine-ligated heme protein[J]. J BiolChem, 2011, 286(19): 16716-16725.
[14] Chakravarthy S, Sternberg SH, Kellenberger CA, et al.Substrate-specific kinetics of dicer-catalyzed RNA processing[J].J Mol Biol, 2010, 404(3): 392-402.
[15] Haase AD, Jaskiewicz L, Zhang HD, et al. TRBP, a regulator ofcellular PKR and HIV-1 virus expression, interacts with Dicerand functions in RNA silencing[J]. EMBO Rep, 2005, 6(10):961-967.
[16] Chen J, Wang DZ. microRNAs in cardiovasculardevelopment[J]. J Mol Cell Cardiol, 2012, 52(5): 949-957.
[17] Huang ZP, Chen JF, Regan JN, et al. Loss of microRNAs inneural crest leads to cardiovascular syndromes resemblinghuman congenital heart defects[J]. Arterioscler Thromb VascBiol, 2010, 30(12): 2575-2586.
[18] Ambros V. The functions of animal microRNAs[J]. Nature,2004, 431(7006): 350-355.
[19] Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiplerelationships between microRNAs and target genes in gastriccancer[J]. PLoS One, 2013, 8(5): e62589.
[20] Liu N, Olson EN. MicroRNA regulatory networks incardiovascular development[J]. Dev Cell, 2010, 18(4): 510-525.
[21] Chen JF, Mandel EM, Thomson JM, et al. The role ofmicroRNA-1 and microRNA-133 in skeletal muscle proliferationand differentiation[J]. Nat Genet, 2006, 38(2): 228-233.
[22] Li J, Cao Y, Ma XJ, et al. Roles of miR-1-1 and miR-181c inventricular septal defects[J]. Int J Cardiol, 2013, 168(2): 1441-1446.
[23] Akiyama H, Chaboissier MC, Behringer RR, et al. Essential roleof Sox9 in the pathway that controls formation of cardiac valvesand septa[J]. Proc Natl Acad Sci U S A, 2004, 101(17): 6502-6507.
[24] Sanchez-Castro M, Gordon CT, Petit F, et al. Congenital heartdefects in patients with deletions upstream of SOX9[J]. HumMutat, 2013, 34(12): 1628-1631.
[25] Yang B, Lin H, Xiao J, et al. The muscle-specific microRNAmiR-1 regulates cardiac arrhythmogenic potential by targetingGJA1 and KCNJ2[J]. Nat Med, 2007, 13(4): 486-491.
[26] Beppu H, Malhotra R, Beppu Y, et al. BMP type II receptorregulates positioning of outflow tract and remodeling ofatrioventricular cushion during cardiogenesis[J]. Dev Biol,2009, 331(2): 167-175.
[27] Ma LJ, Lu MF, Schwartz RJ, et al. Bmp2 is essential for cardiaccushion epithelial-mesenchymal transition and myocardialpatterning[J]. Development, 2005, 132(24): 5601-5611.
[28] O'Brien JE Jr, Kibiryeva N, Zhou XG, et al. Noncoding RNAexpression in myocardium from infants with tetralogy ofFallot[J]. Circ Cardiovasc Genet, 2012, 5(3): 279-286.
[29] Chinchilla A, Lozano E, Daimi H, et al. MicroRNA profilingduring mouse ventricular maturation: a role for miR-27modulating Mef2c expression[J]. Cardiovasc Res, 2011, 89(1):98-108.
[30] Wang J, Song Y, Zhang Y, et al. Cardiomyocyte overexpressionof miR-27b induces cardiac hypertrophy and dysfunction inmice[J]. Cell Res, 2012, 22(3): 516-527.
[31] Huang X, Huang F, Yang D, et al. Expression of microRNA-122contributes to apoptosis in H9C2 myocytes[J]. J Cell Mol Med,2012, 16(11): 2637-2646.
[32] Zhang HS, Wu QY, Xu M, et al. Mitogen-activated proteinkinase signal pathways play an important role in right ventricularhypertrophy of tetralogy of Fallot[J]. Chin Med J (Engl), 2012,125(13): 2243-2249.
[33] 徐洁, 杨中州, 张姝, 等. 先天性心脏病胎儿心脏及胎盘组织中MAPK 及 Akt 信号通路分子的变化[J]. 中国当代儿科杂志, 2010, 12(5): 327-332.
[34] Brown RD, Ambler SK, Li M, et al. MAP kinase kinasekinase-2 (MEKK2) regulates hypertrophic remodeling of theright ventricle in hypoxia-induced pulmonary hypertension[J].Am J Physiol Heart Circ Physiol, 2013, 304(2): H269-H281.
[35] Nigam V, Sievers HH, Jensen BC, et al. Altered microRNAsin bicuspid aortic valve: a comparison between stenotic andinsufficient valves[J]. J Heart Valve Dis, 2010, 19(4): 459-465.
[36] Kaden JJ, Bickelhaupt S, Grobholz R, et al. Expression of bonesialoprotein and bone morphogenetic protein-2 in calcific aorticstenosis[J]. J Heart Valve Dis, 2004, 13(4): 560-566.
[37] Yu ZB, Han SP, Bai YF, et al. microRNA expression profilingin fetal single ventricle malformation identified by deepsequencing[J]. Int J Mol Med, 2012, 29(1): 53-60.
[38] Liu YG, Huang TW, Zhao XL, et al. MicroRNAs modulatethe Wnt signaling pathway through targeting its inhibitors[J].Biochem Biophys Res Commun, 2011, 408(2): 259-264.
[39] Kuhn DE, Nuovo GJ, Martin MM, et al. Human chromosome21-derived miRNAs are overexpressed in down syndrome brainsand hearts[J]. Biochem Biophys Res Commun, 2008, 370(3):473-477.
[40] Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133aregulates cardiomyocyte proliferation and suppresses smoothmuscle gene expression in the heart[J]. Genes Dev, 2008,22(23): 3242-3254.
[41] Nagy A. Cre recombinase: the universal reagent for genometailoring[J]. Genesis, 2000, 26(2): 99-109.

基金

国家自然科学基金(81070136、81270226)。

PDF(1428 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/