有机阴离子转运体1B1基因与新生儿黄疸关系的研究进展

陆岸锋, 钟丹妮

中国当代儿科杂志 ›› 2014, Vol. 16 ›› Issue (11) : 1183-1187.

PDF(1432 KB)
HTML
PDF(1432 KB)
HTML
中国当代儿科杂志 ›› 2014, Vol. 16 ›› Issue (11) : 1183-1187. DOI: 10.7499/j.issn.1008-8830.2014.11.024
综述

有机阴离子转运体1B1基因与新生儿黄疸关系的研究进展

  • 陆岸锋, 钟丹妮
作者信息 +

Research progress on the relationship between SLCO1B1 gene and neonatal jaundice

  • LU An-Feng, ZHONG Dan-Ni
Author information +
文章历史 +

摘要

有机阴离子转运体2(OATP2)是一种肝细胞膜上转运胆红素等物质的转运体,影响胆红素的代谢.OATP2 由有机阴离子转运体1B1(SLCO1B1)基因编码,该基因突变可抑制OATP2 的转运功能,致胆红素清除减慢,引起高胆红素血症.近年的研究显示,SLCO1B1 基因多态性可能与新生儿黄疸发生相关.该文综述了SLCO1B1 基因结构、功能及SLCO1B1 基因突变与新生儿黄疸的关系.

Abstract

Organic anion transporter 2 (OATP2) is an uptake transporter located on the basolateral membrane of human hepatocytes. It mediates the transportation of various organic solutes including bilirubin and impacts bilirubinm etabolism. It is encoded by the gene of solute carrier organic anion transporter family member 1B1 and the genevariants that inhibit hepatic bilirubin uptake function may reduce the normal functional level of bilirubin eliminationand result in neonatal hyperbilirubinemia. In recent years, some studies have indicated that variants of SLCO1B1 areassociated with neonatal jaundice. This article reviews the research advance in SLCO1B1 with respect to the structureand function and the relationship between SLCO1B1 mutations and neonatal jaundice.

关键词

有机阴离子转运体2 / SLCO1B1基因 / 黄疸 / 新生儿

Key words

Organic anion transporter 2 / SLCO1B1 gene / Jaundice / Neonate

引用本文

导出引用
陆岸锋, 钟丹妮. 有机阴离子转运体1B1基因与新生儿黄疸关系的研究进展[J]. 中国当代儿科杂志. 2014, 16(11): 1183-1187 https://doi.org/10.7499/j.issn.1008-8830.2014.11.024
LU An-Feng, ZHONG Dan-Ni. Research progress on the relationship between SLCO1B1 gene and neonatal jaundice[J]. Chinese Journal of Contemporary Pediatrics. 2014, 16(11): 1183-1187 https://doi.org/10.7499/j.issn.1008-8830.2014.11.024

参考文献

[1] Hagenbuch B, Stieger, B. The SLCO (former SLC21) superfamily of transporters[J]. Mol Aspects Med, 2013, 34(2-3):396-412.
[2] Jacquemin E, Hagenbuch B, Stieger B, et al. Expression cloning of a rat liver Na(+)-independent organic anion transporter[J]. Proc Natl Acad Sci USA, 1994, 91(1):133-137.
[3] Kullak-Ublick GA, Hagenbuch B, Stieger B, et al. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver[J]. Gastroenterology, 1995, 109(4):1274-1282.
[4] Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs:the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies[J]. Br J Pharmacol, 2012, 165(5):1260-1287.
[5] Konig J, Cui Y, Nies AT, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane[J]. AmJ Physiol Gastroint Liver Physiol, 2000, 278(1):G156-G164.
[6] Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1:a genetically polymorphic transporter of major importance for hepatic drug uptake[J]. Pharmacol Rev, 2011, 63(1):157-181.
[7] Nies AT, Niemi M, Burk O, et al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1[J]. Genome Med, 2013, 5(1):1
[8] Abe T, Kakyo M, Tokui T, et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1[J]. J Biol Chem, 1999, 274(24):17159-17163.
[9] Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver[J]. Gastroenterology, 2001, 120(2):525-533.
[10] Kwara A, Cao L, Yang H, et al. Factors associated with variability in rifampin plasma pharmacokinetics and the relationship between rifampin concentrations and induction of efavirenz clearance[J]. Pharmacotherapy, 2014, 34(3):265-271.
[11] Weaver YM, Hagenbuch B. Several conserved positively charged amino acids in OATP1B1 are involved in binding or translocation of different substrates[J]. J Membr Biol, 2010, 236(3):279-290.
[12] DeGorter MK, Ho RH, Leake BF, et al. Interaction of three regiospecific amino acid residues is required for OATP1B1 gain of OATP1B3 substrate specificity[J]. Mol Pharm, 2012, 9(4):986-995.
[13] Chiou WJ, de Morais SM, Kikuchi R, et al. In vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia[J]. Xenobiotica, 2014, 44(3):276-282.
[14] van de Steeg E, Wagenaar E, van der Kruijssen CM, et al. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs[J]. J Clin Invest, 2010, 120 (8):2942-2952.
[15] Tirona RG, Leake BF, Merino G, et al. Polymorphisms in OATP-C:identification of multiple allelic variants associated with altered transport activity among European-and African-Americans[J]. J Biol Chem, 2001, 276(38):35669-35675.
[16] Tirona RG, Kim RB. Pharmacogenomics of organic aniontransporting polypep-tides(OATP)[J]. Adv Drug Deliv Rev, 2002, 54(10):1343-1352.
[17] Wong FL, Boo NY, Othman A. Genotyping of OATP2 variants in a group of Malaysian neonates using high-resolution melting analysis[J]. Biores Open Access, 2012, 1(2):92-96.
[18] Sortica Vde A, Ojopi EB, Genro JP, et al. Influence of genomic ancestry on the distribution of SLCO1B1, SLCO1B3 and ABCB1 gene polymorphisms among Brazilians[J]. Basic Clin Pharmacol Toxicol, 2012, 110(5):460-468.
[19] Nozawa T, Nakajima M, Tamai I, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9):allele frequencies in the Japanese population and functional analysis[J]. J Pharmacol Exp Therapeut, 2002, 302(2):804-813.
[20] Sanna S, Busonero F, Maschio A, et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia[J]. Hum Mol Genet, 2009, 18(14):2711-2718.
[21] Sortica VA, Fiegenbaum M, Lima LO, et al. SLCO1B1 gene variability influences lipid-lowering efficacy on simvastatin therapy in Southern Brazilians [J]. Clin Chem Lab Med, 2012, 50(3):441-448.
[22] de Keyser CE, Peters BJ, Becker ML, et al. The SLCO1B1 c.521T > C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study[J]. Pharmacogenet Genomics, 2014, 24(1):43-51.
[23] Niemi M. Transporter pharmacogenetics and statin toxicity[J]. Clin Pharmacol Therapeut, 2010, 87(1):130-133.
[24] Lauer BJ, Spector ND. Hyperbilirubinemia in the newborn[J]. Pediatr Rev, 2011, 32(8):341-349.
[25] Najib KS, Saki F, Hemmati F, et al. Incidence, risk factors and causes of severe neonatal hyperbilirubinemia in the South of iran (fars province)[J]. Iran Red Crescent Med J, 2013, 15(3):260-263.
[26] Watchko J F. Genetics and pediatricun conjugated hyperbilirubinemia[J]. J Pediatr, 2013, 162(6):1092-1094.
[27] Prachukthum S, Nunnarumit P, Pienvichit P, et al. Genetic polymorphisms in Thai neonates with hyperbilirubinemia [J]. Acta Paediatr, 2009, 98(7):1106-1110.
[28] 孙玲玲, 陈运生, 余珍珠, 等. 新生儿高未结合胆红素血症 遗传因素的研究[J]. 中国当代儿科杂志, 2012, 14(4):256-259.
[29] Huang MJ, Kua KE, Teng HC, et al. Risk factors for severe hyperbilirubinemia in neonates[J]. Pediatr Res, 2004, 56(5):682-689.
[30] Huang CS. Molecular genetics of unconjugated hyperbilirubinemia in Taiwanese [J]. J Biomed Sci, 2005, 12(3):445-450.
[31] Buyukkale G, Turker G, Kasap M, et al. Neonatal hyperbilirubinemia and organic anion transporting polypeptide-2 gene mutations[J]. Am J Perinatol, 2011, 28(8):619-626.
[32] Alencastro de Azevedo L, Reverbel da Silveira T, Carvalho CG, et al. UGT1A1, SLCO1B1, and SLCO1B3 polymorphisms vs.neonatal hyperbilirubinemia:is there an association?[J]. Pediatr Res, 2012, 72(2):169-173.
[33] Johnson AD, Kavousi M, Smith AV, et al. Genome-wide association meta-analysis for total serum bilirubin levels[J]. Hum Mol Genet, 2009, 18(14):2700-2710.
[34] 田桂英, 徐放生, 朱凤霞, 等. 新生儿黄疸与胆红素-尿苷 二磷酸葡萄糖醛酸转移酶和有机阴离子转运因子2 基因突 变的关系[J]. 中国新生儿科杂志, 2007, 22(4):193-196
[35] 张海霞, 赵昕, 杨智, 等. 新生儿高胆红素血症与有机阴离 子转运体 1B1 T521C/A388G 多态性的相关性研究[J]. 中华儿 科杂志, 2010, 48(9):650-655.
[36] 姜敏, 王亚娟, 罗洁, 等. 北方地区新生儿高胆红素血症患 儿UGT1A1 和OATP2 基因突变的研究[J]. 中国新生儿科杂 志, 2012, 27(6):369-372
[37] Liu J, Long J, Zhang S, et al. Polymorphic variants of SLCO1B1 in neonatal hyperbilirubinemia in China[J]. Italian J Pediatr, 2013, 39(1):49.
[38] Liu J, Long J, Zhang S, et al. The impact of SLCO1B1 genetic polymorphisms on neonatal hyperbilirubinemia:a systematic review with meta-analysis[J]. J Pediatr (Rio J), 2013, 89(5):434-443.
[39] Iwai M, Suzuki H, Ieiri I, et al. Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C)[J]. Pharmacogenetics, 2004, 14(11):749-757.
[40] Wong FL, Boo MY, Ainoon O, et al.Variants of organic anion transporter polypeptide 2 gene are not risk factors associated with severe neonatal hyperbilirubinemia[J]. Malays J Pathol, 2009, 31(2):99-104.
[41] Chang PF, Lin YC, Liu K, et al. Risk of hyperbilirubinemia in breast-fed infants[J]. J Pediatr, 2011, 159(4):561-565.
[42] Chang PF, Lin YC, Liu K, et al. Identifying term breast-fed infants at risk of significant hyperbilirubinemia[J]. Pediatr Res, 2013, 74 (4):408-412.
[43] Wong F, Boo N, Othman A. Risk factors associated with unconjugated neonatal hyperbilirubinemia in Malaysian neonates[J]. J Trop Pediatr, 2013, 59(4):280-285.
[44] Watchko JF, Lin Z, Clark RH, et al. Complex multifactorial nature of significant hyperbilirubinemia in neonates[J]. Pediatrics, 2009, 124 (5):e868-877.

PDF(1432 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/