琥珀酸对惊厥幼鼠小脑浦肯野细胞的保护作用

张静, 陈静, 谭晓丽, 任颖鸽, 杜永平, 张月萍

中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (1) : 85-93.

PDF(2301 KB)
HTML
PDF(2301 KB)
HTML
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (1) : 85-93. DOI: 10.7499/j.issn.1008-8830.2016.01.017
论著·实验研究

琥珀酸对惊厥幼鼠小脑浦肯野细胞的保护作用

  • 张静1, 陈静1, 谭晓丽1, 任颖鸽1, 杜永平1, 张月萍2
作者信息 +

Protective effect of succinic acid on cerebellar Purkinje cells of neonatal rats with convulsion

  • ZHANG Jing1, CHEN Jing1, TAN Xiao-Li1, REN Ying-Ge1, DU Yong-Ping1, ZHANG Yue-Ping2
Author information +
文章历史 +

摘要

目的 探讨琥珀酸(SA)对惊厥幼鼠小脑浦肯野细胞(PC)的保护作用。方法 将健康新生7 d Sprague-Dawley(SD)幼鼠120 只随机分为新生期组和发育期组,两组再随机分为正常对照组、惊厥模型组、小剂量苯巴比妥(PB)组(30 mg/kg)、大剂量PB 组(120 mg/kg)、小剂量琥珀酸(SA)组(30 mg/kg)、大剂量SA 组(120 mg/kg)。利用腹腔注射戊四氮制备幼鼠惊厥模型,正常对照组应用生理盐水替代。新生期各组大鼠分别在注射PB 或SA 或生理盐水后30 min 处死取小脑,发育期各组大鼠分别在注射PB 或SA 或生理盐水后养至30 d 时处死取小脑。采用全细胞膜片钳技术,在各组幼鼠小脑脑片上记录PC 动作电位(AP);采用低频刺激平行纤维(PF)诱发兴奋性突触后电流(EPSC),观察SA 对各组大鼠PC 长时程抑制(LTD)的影响。结果 与对照组相比,新生期和发育期惊厥幼鼠PC AP 频率均明显增高(P<0.05),发育期惊厥幼鼠PC AP 阈刺激明显降低(P<0.01),且PC EPSC 的幅值抑制程度明显增强(P<0.05);与对照组相比,新生期和发育期大剂量PB 组惊厥幼鼠PC AP 阈刺激明显降低(P<0.01),PC AP 频率明显增高(P<0.05),PC EPSC 抑制程度明显增强(P<0.05);新生期和发育期大剂量SA 组惊厥幼鼠PC AP 频率与惊厥组相比均明显降低(P<0.05);发育期两种剂量SA 组AP 产生的阈值与惊厥组相比均明显增高(P<0.05)。结论 SD 幼鼠新生期惊厥导致的小脑PC 兴奋性增高和PF-PC 突触可塑性异常可持续至发育期,PB 可能加重这种异常,而SA 能降低惊厥幼鼠小脑PC 的兴奋性,并对惊厥造成的PC LTD 的近期和远期异常有明显的修复作用。

Abstract

Objective To investigate the protective effect of succinic acid (SA) on the cerebellar Purkinje cells (PCs) of neonatal rats with convulsion. Methods A total of 120 healthy neonatal Sprague-Dawley rats aged 7 days were randomly divided into a neonatal period group and a developmental period group. Each of the two groups were further divided into 6 sub-groups: normal control, convulsion model, low-dose phenobarbital (PB) (30 mg/ kg), high-dose PB (120 mg/kg), low-dose SA (30 mg/kg), and high-dose SA (120 mg/kg). Intraperitoneal injection of pentylenetetrazole was performed to establish the convulsion model. The normal control group was treated with normal saline instead. The rats in the neonatal group were sacrificed at 30 minutes after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Those in the developmental group were sacrificed 30 days after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Whole cell patch clamp technique was used to record the action potential (AP) of PCs in the cerebellar slices of neonatal rats; the parallel fibers (PF) were stimulated at a low frequency to induce excitatory postsynaptic current (EPSC). The effect of SA on long-term depression (LTD) of PCs was observed. Results Compared with the normal control groups, the neonatal and developmental rats with convulsion had a significantly higher AP frequency of PCs (P<0.05), and the developmental rats with convulsion had a significantly decreased threshold stimulus (P<0.01) and a significantly greater inhibition of the amplitude of EPSC in PCs (P<0.05). Compared with the normal control groups, the neonatal and developmental rats with convulsion in the high-dose PB groups had a significantly decreased threshold stimulus (P<0.01), a significantly higher AP frequency of PCs (P<0.05), and a significantly greater inhibition of EPSC in PCs (P<0.05). Compared with the neonatal and developmental rats in the convulsion model groups, those in the high-dose SA groups had a significantly decreased AP frequency of PCs (P<0.05). The developmental rats in the low-and high-dose SA groups had a significantly higher AP threshold than those in the convulsion model group (P<0.05). Conclusions The high excitability of PCs and the abnormal PF-PC synaptic plasticity caused by convulsion in neonatal rats may last to the developmental period, which can be aggravated by PB, while SA can reduce the excitability of PCs in neonatal rats with convulsion and repair the short-and long-term abnormalities of LTD of PCs caused by convulsion.

关键词

惊厥 / 琥珀酸 / 苯巴比妥 / 浦肯野细胞

Key words

Convulsion / Succinic acid / Phenobarbital / Purkinje cell

引用本文

导出引用
张静, 陈静, 谭晓丽, 任颖鸽, 杜永平, 张月萍. 琥珀酸对惊厥幼鼠小脑浦肯野细胞的保护作用[J]. 中国当代儿科杂志. 2016, 18(1): 85-93 https://doi.org/10.7499/j.issn.1008-8830.2016.01.017
ZHANG Jing, CHEN Jing, TAN Xiao-Li, REN Ying-Ge, DU Yong-Ping, ZHANG Yue-Ping. Protective effect of succinic acid on cerebellar Purkinje cells of neonatal rats with convulsion[J]. Chinese Journal of Contemporary Pediatrics. 2016, 18(1): 85-93 https://doi.org/10.7499/j.issn.1008-8830.2016.01.017

参考文献

[1] Vasudevan C, Levene M. Epidemiology and aetiology of neonatal seizures[J]. Semin Fetal Neonatal Med, 2013, 18(4): 185-191.
[2] Castelhano AS, Cassane Gdos S, Scorza FA, et al. Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures[J]. Front Behav Neurosci, 2013, 7: 36.
[3] Sayin U, Hutchinson E, Meyerand ME, et al. Age-dependent long-term structural and functional effects of early-life seizures: evidence for a hippocampal critical period influencing plasticity in adulthood[J]. Neuroscience, 2015, 288: 120-134.
[4] Glass HC. Neonatal seizures: advances in mechanisms and management[J]. Clin Perinatol, 2014, 41(1): 177-190.
[5] Cornejo BJ, Mesches MH, Coultrap S, et al. A single episode of neonatal seizures permanently alters glutamatergic synapses[J]. Ann Neurol, 2007, 61(5): 411-426.
[6] Forcelli PA, Janssen MJ, Vicini S, et al. Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development[J]. Ann Neurol, 2012, 72(3): 363-372.
[7] Gutherz SB, Kulick CV, Soper C, et al. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats[J]. Epilepsy Behav, 2014, 37: 265-269.
[8] Bhardwaj SK, Forcelli PA, Palchik G, et al. Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat[J]. Neuropharmacology, 2012, 62(7): 2337-2345.
[9] 金园, 岳旺. 琥珀酸的药理研究进展[J]. 中国药学杂志, 1983, 18(2): 36-38.
[10] 金园, 张士善. 琥珀酸的中枢抑制作用[J]. 药学学报, 1980, 15(12): 761-763.
[11] Yue W, Liu YX, Zang DL, et al. Inhibitory effects of succinic acid on chemical kindling and amygdala electrical kindling in rats[J]. Acta Pharmacol Sin, 2002, 23(9): 847-850.
[12] 谭晓丽, 师长宏, 任颖鸽, 等. 大剂量苯巴比妥对惊厥幼鼠 浦肯野细胞电生理功能的影响[J]. 中国病理生理杂志, 2014, 30(3): 529-532, 557.
[13] Löscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations[J]. Epilepsy Res, 1988, 2(3): 145-181.
[14] Craig CR, Colasanti BK. A study of pentylenetetrazol kindling in rats and mice[J]. Pharmacol Biochem Behav, 1988, 31(4): 867-870.
[15] Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure[J]. Electroencephalogr Clin Neurophysiol, 1972, 32(3): 281-294.
[16] Kikuchi K, Hamano S, Oritsu T, et al. Effectiveness and safety of non-intravenous high-dose phenobarbital therapy for intractable epilepsy during childhood[J]. Brain Dev, 2011, 33(5): 379-383.
[17] 徐书云, 卞如濂, 陈修. 药理实验方法学[M]. 第3 版. 北京: 人民卫生出版社, 2001: 200-204.
[18] 徐晓科, 蔡方成, 宋艳, 等. 常用抗惊厥治疗方案对新生鼠 脑发育的影响[J]. 第三军医大学学报, 2010, 32(18): 1981-1985.
[19] Schulz DW, Macdonald RL. Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions[J]. Brain Res, 1981, 209(1): 177-188.
[20] Ben-Ari Y. The GABA excitatory/inhibitory developmental sequence: a personal journey[J]. Neuroscience, 2014, 279: 187-219.
[21] 章政, 李静, 聂惠贞, 等. 干贝素的抗癫癎作用[J]. 中国海洋 药物, 2005, 24(3): 33-35.
[22] 丛红群, 岳旺, 杨志宏, 等. 琥珀酸在海马CA1 区对突触前 GABA 释放的影响[J]. 神经解剖学杂志, 2009, 25(1): 6-10.
[23] Kohda K, Kakegawa W, Yuzaki M. Unlocking the secrets of the δ2 glutamate receptor: a gatekeeper for synaptic plasticity in the cerebellum[J]. Commun Integr Biol, 2013, 6(6): e26466.
[24] 韩中胜, 乔健天. 小脑: 它的组件式神经元环路是如何进 行运动学习和经典式条件反射活动的?[J]. 生理科学进展, 2008, 39(1): 15-20.
[25] Ito M, Yamaguchi K, Nagao S, et al. Long-term depression as a model of cerebellar plasticity[J]. Prog Brain Res, 2014, 210: 1-30.
[26] D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control[J]. Prog Brain Res, 2014, 210: 31-58.
[27] Chen J, Cai F, Cao J, et al. Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain[J]. J Neurosci Res, 2009, 87(13): 2898-2907.
[28] Verrotti A, Scaparrotta A, Cofini M, et al. Developmental neurotoxicity and anticonvulsant drugs: a possible link[J]. Reprod Toxicol, 2014, 48: 72-80.

PDF(2301 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/