MRI和DTI评价早产儿脑白质髓鞘发育

李冰肖, 柳国胜, 凌雪英, 陈汉芳, 罗先琼

中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 476-481.

PDF(1129 KB)
HTML
PDF(1129 KB)
HTML
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 476-481. DOI: 10.7499/j.issn.1008-8830.2016.06.002
论著·临床研究

MRI和DTI评价早产儿脑白质髓鞘发育

  • 李冰肖1, 柳国胜1, 凌雪英2, 陈汉芳2, 罗先琼3
作者信息 +

Evaluation of white matter myelination in preterm infants using DTI and MRI

  • LI Bing-Xiao1, LIU Guo-Sheng1, LING Xue-Ying2, CHEN Han-Fang2, LUO Xian-Qiong3
Author information +
文章历史 +

摘要

目的 应用磁共振(MRI)、磁共振弥散张量成像(DTI)研究早产儿脑白质髓鞘发育的特点。方法 胎龄≤32周、出生体重<1 500 g的31例早产儿根据头部MRI检查分为早产脑损伤组(12例)和早产无脑损伤组(19例)。选取24例足月儿作为对照组。均于胎龄或纠正胎龄37~40周之间完成头部MRI及DTI检查。测定3组相同感兴趣区的部分各向异性参数(FA)和表观扩散系数(ADC)。结果 早产脑损伤组内囊后肢FA值小于早产无脑损伤组和足月对照组 (P < 0.05);早产脑损伤组和早产无脑损伤组的额叶白质和豆状核的FA值小于足月对照组 (P < 0.05);3组间枕叶白质的FA值差异无显著性 (P > 0.05)。早产脑损伤组和早产无脑损伤组内囊后肢、豆状核、枕叶白质、额叶白质的ADC值高于足月对照组 (P < 0.05)。结论 早产儿脑损伤容易出现内囊后肢深部脑白质髓鞘化障碍或延迟。早产儿至纠正胎龄足月时,无论有无脑损伤,脑周围白质及灰质成熟度均低于足月儿。

Abstract

Objective To investigate the features of white matter myelin development in preterm infants using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Methods A total of 31 preterm infants with a gestational age of ≤32 weeks and a birth weight of <1 500 g were enrolled. According to head MRI findings, these infants were divided into preterm group with brain injury (12 infants) and preterm group without brain injury (19 infants). A total of 24 full-term infants were enrolled as control group. Head MRI and DTI were performed at a gestational age or corrected gestational age of 37-40 weeks. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured for the same regions of interest in the three groups. Results The preterm group with brain injury showed a significantly lower FA value of the posterior limb of the internal capsule than the preterm group without brain injury and full-term control group (P < 0.05). The preterm groups with and without brain injury showed significantly lower FA values of frontal white matter and lenticular nucleus than the full-term control group (P < 0.05). The FA value of occipital white matter showed no significant differences among the three groups (P > 0.05). Compared with the full-term control group, the preterm groups with and without brain injury showed significantly higher ADC values of the posterior limb of the internal capsule, lenticular nucleus, occipital white matter, and frontal white matter (P < 0.05). Conclusions After brain injury, preterm infants tend to develop disorder or delay of white matter myelination in the posterior limb of the internal capsule. At a corrected full-term gestational age, the preterm infants with and without brain injury have a lower grade of maturity in periventricular white matter and grey matter than full-term infants.

关键词

脑损伤 / 脑发育 / 磁共振 / 磁共振弥散张量成像 / 部分各向异性参数 / 表观扩散系数 / 早产儿

Key words

Brain injury / Brain development / Diffusion tensor imaging / Fractional anisotropy / Apparent diffusion coefficient / Preterm infant

引用本文

导出引用
李冰肖, 柳国胜, 凌雪英, 陈汉芳, 罗先琼. MRI和DTI评价早产儿脑白质髓鞘发育[J]. 中国当代儿科杂志. 2016, 18(6): 476-481 https://doi.org/10.7499/j.issn.1008-8830.2016.06.002
LI Bing-Xiao, LIU Guo-Sheng, LING Xue-Ying, CHEN Han-Fang, LUO Xian-Qiong. Evaluation of white matter myelination in preterm infants using DTI and MRI[J]. Chinese Journal of Contemporary Pediatrics. 2016, 18(6): 476-481 https://doi.org/10.7499/j.issn.1008-8830.2016.06.002

参考文献

[1] Marlow N, Wolke D, Bracewell MA, et al. Neurologic and developmental disability at six years of age after extremely preterm birth[J]. N Engl J Med, 2005, 352(1): 9-19.
[2] Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood[J]. Lancet, 2008, 371(9608): 261-269.
[3] Bhutta AT, Cleves MA, Casey PH, et al. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis[J]. JAMA, 2002, 288(6): 728-737.
[4] Larroque B, Ancel PY, Marret S, et al. Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study[J]. Lancet, 2008, 371(9615): 813-820.
[5] Williams J, Lee KJ, Anderson PJ. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: a systematic review[J]. Dev Med Child Neurol, 2010, 52(3): 232-237.
[6] Pandit AS, Ball G, Edwards AD, et al. Diffusion magnetic resonance imaging in preterm brain injury[J]. Neuroradiology, 2013, 55(Suppl 2): 65-95.
[7] Partridge SC, Mukherjee P, Henry RG, et al. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns[J]. Neuroimage, 2004, 22(3): 1302-1314.
[8] Anjari M, Srinivasan L, Allsop JM, et al. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants[J]. Neuroimage, 2007, 35(3): 1021-1027.
[9] Arzoumanian Y, Mirmiran M, Barnes PD, et al. Diffusion tensor brain imaging findings at term-equivalent age may predict neurologic abnormalities in low birth weight preterm infants[J]. AJNR Am J Neuroradiol, 2003, 24(8): 1646-1653.
[10] Sundgren PC, Dong Q, Gomez-Hassan D, et al. Diffusion tensor imaging of the brain: review of clinical applications[J]. Neuroradiology, 2004, 46(5): 339-350.
[11] Hüppi PS, Murphy B, Maier SE, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging[J]. Pediatrics, 2001, 107(3): 455-460.
[12] 王淑霞. 3.0 T MRI、扩散加权成像和扩散张量成像在早产儿脑病的应用研究[D]. 武汉: 华中科技大学, 2012.
[13] Arfanakis K, Haughton VM, Carew JD, et al. Diffusion tensor MR imaging in diffuse axonal injury[J]. AJNR Am J Neuroradiol, 2002, 23(5): 794-802.
[14] Ling X, Tang W, Liu G, et al. Assessment of brain maturation in the preterm infants using diffusion tensor imaging (DTI) and enhanced T2 star weighted angiography (ESWAN)[J]. Eur J Radiol, 2013, 82(9): E476-E483.
[15] Liauw L, Palm-Meinders IH, van der Grond J, et al. Differentiating normal myelination from hypoxic-ischemic encephalopathy on T1-weighted MR Images: a new approach[J]. AJNR Am J Neuroradiol, 2007, 28(4): 660-665.
[16] Dudink J, Buijs J, Govaert P, et al. Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants[J]. Pediatr Radiol, 2010, 40(8): 1397-1404.
[17] de Bruine FT, van Wezel-Meijler G, Leijser LM, et al. Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants[J]. Eur Radiol, 2011, 21(3): 538-547.
[18] Gilmore JH, Lin W, Corouge I, et al. Early postnatal development of corpus callosum and corticospinal white matter assessed with quantitative tractography[J]. AJNR Am J Neuroradiol, 2007, 28(9): 1789-1795.
[19] Hüppi PS, Murphy B, Maier SE, et al. Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging[J]. Pediatrics, 2001, 107(3): 455-460.
[20] Wang Q, Xu X, Zhang M. Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging[J]. AJNR Am J Neuroradiol, 2010, 31(3): 516-520.
[21] Pfefferbaum A, Adalsteinsson E, Rohlfing T, et al. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration[J]. Neurobiol Aging, 2010, 31(3): 482-493.

基金

广东省科技计划项目立项资助 (2014A020213011)。


PDF(1129 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/