生物标记物粪便胆汁酸的测定在过敏性紫癜患儿诊治中的意义

胡红卫, 段江, 赵波, 熊晶晶, 刘梅, 崔晶晶, 吉晓菲, 张婷婷, 张丽芝, 黄永坤

中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 517-521.

PDF(1215 KB)
HTML
PDF(1215 KB)
HTML
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (6) : 517-521. DOI: 10.7499/j.issn.1008-8830.2016.06.010
论著·临床研究

生物标记物粪便胆汁酸的测定在过敏性紫癜患儿诊治中的意义

  • 胡红卫1, 段江1, 赵波2, 熊晶晶1, 刘梅1, 崔晶晶2, 吉晓菲1, 张婷婷1, 张丽芝1, 黄永坤1
作者信息 +

Significance of detection of biomarker fecal bile acids in the diagnosis and treatment of childhood Henoch-Schönlein purpura

  • HU Hong-Wei1, DUAN Jiang1, ZHAO Bo2, XIONG Jing-Jing1, LIU Mei1, CUI Jing-Jing2, JI Xiao-Fei1, ZHANG Ting-Ting1, ZHANG Li-Zhi1, HUANG Yong-Kun1
Author information +
文章历史 +

摘要

目的 探讨生物标记物粪便胆汁酸浓度在过敏性紫癜(HSP)患者中的变化及其在诊治中的临床意义。方法 选取2014~2016年确诊为HSP的19例患儿为HSP组,另选取27例健康儿童为健康对照组。采集HSP组患儿急性期、恢复期及健康对照组儿童粪便标本,应用液相质谱技术检测各组儿童粪便胆汁酸水平。结果 HSP组患儿恢复期胆酸水平均高于健康对照组和HSP组急性期 (P < 0.016)。HSP组患儿恢复期鹅脱氧胆酸水平高于健康对照组 (P < 0.016)。HSP组患儿急性期和恢复期脱氧胆酸、石胆酸水平均低于健康对照组 (分别P < 0.05、P < 0.016)。各组间熊去氧胆酸水平比较差异均无统计学意义 (P > 0.05)。结论 HSP患儿急性期粪便次级胆汁酸脱氧胆酸和石胆酸低于健康对照组,这可能与HSP的发病或转归有关。

Abstract

Objective To investigate the changes and clinical significance of biomarker fecal bile acids (BA) in children with Henoch-Schönlein purpura (HSP). Methods Nineteen children with HSP and twenty-seven healthy children were enrolled in this study. The stool samples were obtained at the acute and remission phases. Fecal BA levels were measured by high performance liquid chromatography mass spectrometry (HPLC-MS). Results The fecal cholic acid level in the HSP remission group was significantly higher than in the HSP acute group and the healthy control group (P < 0.016). The fecal chenodeoxycholic acid level in the HSP remission group was significantly higher than in the healthy control group (P < 0.016). The levels of fecal secondary colonic bile acids, deoxycholic acid and lithocholic acid, in the HSP acute and remission groups were significantly lower than in the healthy control group(P < 0.05, P < 0.016 respectively). No significant differences were found in the levels of fecal urosodeoxycholic acid among the three groups (P > 0.05). Conclusions Fecal secondary colonic bile acids, deoxycholic acid and lithocholic acid, are in decrease in children with HSP at the acute stage, which may be involved in the pathogenesis and treatment outcomes of HSP.

关键词

过敏性紫癜 / 粪便 / 胆汁酸 / 儿童

Key words

Henoch-Schö / nlein purpura / Feces / Bile acid / Child

引用本文

导出引用
胡红卫, 段江, 赵波, 熊晶晶, 刘梅, 崔晶晶, 吉晓菲, 张婷婷, 张丽芝, 黄永坤. 生物标记物粪便胆汁酸的测定在过敏性紫癜患儿诊治中的意义[J]. 中国当代儿科杂志. 2016, 18(6): 517-521 https://doi.org/10.7499/j.issn.1008-8830.2016.06.010
HU Hong-Wei, DUAN Jiang, ZHAO Bo, XIONG Jing-Jing, LIU Mei, CUI Jing-Jing, JI Xiao-Fei, ZHANG Ting-Ting, ZHANG Li-Zhi, HUANG Yong-Kun. Significance of detection of biomarker fecal bile acids in the diagnosis and treatment of childhood Henoch-Schönlein purpura[J]. Chinese Journal of Contemporary Pediatrics. 2016, 18(6): 517-521 https://doi.org/10.7499/j.issn.1008-8830.2016.06.010

参考文献

[1] He X, Zhao Y, Li Y, et al. Serum amyloid A levels associated with gastrointestinal manifestations in Henoch-Schönlein purpura[J]. Inflammation, 2012, 35(4): 1251-1255.
[2] 朱光华, 钮小玲, 黄文彦. 2012年KDIGO紫癜性肾炎临床实践指南解读[J]. 中华实用儿科临床杂志, 2013, 28(17): 1291-1293.
[3] 黄雷, 刘爱民, 戴宇文, 等. 儿童过敏性紫癜760例临床分析[J]. 中华皮肤科杂志, 2015, 48(1): 11-14.
[4] Yang YH, Yu HH, Chianq BL. The diagnosis and classification of Henoch-Schönlein purpura: an updated review[J]. Autoimmun Rev, 2014, 13(4-5): 355-358.
[5] Ou J, DeLany JP, Zhang M, et al. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations[J]. Nutr Cancer, 2012, 64(1): 34-40.
[6] Duboc H, Rainteau D, Rajca S, et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome[J]. Neuroqastroenterol Motil, 2012, 24(6): 513-520.
[7] Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62(4): 531-539.
[8] Weingarden AR, Dosa PI, DeWinter E, et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control clostridium difficile germination and growth[J]. PLoS One, 2016, 11(1): e0147210.
[9] 中华医学会儿科学分会免疫学组, 《中华儿科杂志》编辑委员会. 儿童过敏性紫癜循证诊治建议[J]. 中华儿科杂志, 2013, 51(7): 502-507.
[10] Zhang Y, Guo X, Guo J, et al. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx[J]. Sci Rep, 2014, 4: 5654.
[11] John C, Werner P, Worthmann A, et al. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids[J]. J Chromatogr A, 2014, 1371: 184-195.
[12] Chen T, Jia RZ, Guo ZP, et al. Elevated serum interleukin-33 levels in patients with Henoch-Schönlein purpura[J]. Arch Dermatol Res, 2013, 305(2): 173-177.
[13] Chen O, Zhu XB, Ren H, et al. The imbalance of Th17/Treg in Chinese children with Henoch-schönlein purpura[J]. Int Immunopharmacol, 2013, 16(1): 67-71.
[14] López-Mejías R, Genre F, Pérez BS, et al. Association of HLA-B*41:02 with Henoch-Schönlein Purpura (IgA Vasculitis) in Spanish individuals irrespective of the HLA-DRB1 status[J]. Arthritis Res Ther, 2015, 17: 102.
[15] Yang YH, Tsai IJ, Chang CJ, et al. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schönlein Purpura[J]. PLoS One, 2015, 10(3): e0120411.
[16] 王凤英, 鲁曼. 过敏性紫癜患儿外周血单个核细胞细胞因子信号转导抑制蛋白1、3 mRNA的表达[J]. 临床儿科杂志, 2015, 33(1): 60-63.
[17] 谢志玉, 邱光钰. 肠粘膜屏障功能与儿童过敏性紫癜的相关性分析[J]. 中国实验诊断学, 2015, 19(8): 1396-1397.
[18] 娄俊丽, 黄永坤, 刘梅, 等. 住院8天过敏性紫癜患儿肠道菌群的变化研究[J]. 中国微生态学杂志, 2009, 21(5): 410-414.
[19] 高晓琳, 黄永坤, 刘梅, 等. 过敏性紫癜患儿胃肠黏膜屏障变化研究[J]. 中国实用儿科杂志, 2010, 25(4): 286-288.
[20] Devlin AS, Fischbach MA. A biosynthetic pathway for a prominent class of microbiota-derived bile acids[J]. Nat Chem Biol, 2015, 11(9): 685-690.
[21] Chiang JY. Bile acids: regulation of synthesis[J]. J Lipid Res, 2009, 50(10): 1955-1966.
[22] Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids[J]. EMBO J, 2006, 25(7): 1419-1425.
[23] Bajor A, Gillberg PG, Abrahamsson H. Bile acids: short and long term effects in the intestine[J]. Scand J Gastroenterol, 2010, 45(6): 645-664.
[24] Keating N, Keely SJ. Bile acids in regulation of intestinal physiology[J]. Curr Gastroenterol Rep, 2009, 11(5): 375-382.
[25] Barcelo A, Claustre J, Toumi F, et al. Effect of bile salts on colonic mucus secretion in isolated vascularly perfused rat colon[J]. Dig Dis Sci, 2001, 46(6): 1223-1231.
[26] Strauch ED, Yamaquchi J, Bass BL, et al. Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced expression of transforming growth factor-beta[J]. J Am Coll Surg, 2003, 197(6): 974-984.
[27] Mühlbauer M, Allard B, Bosserhoff AK, et al. Differential effects of deoxycholic acid and taurodeoxycholic acid on NF-kappa B signal transduction and IL-8 gene expression in colonic epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286(6): G1000-G1008.
[28] Münch A, Ström M, Söderholm JD. Dihydroxy bile acids increase mucosal permeability and bacterial uptake in human colon biopsies[J]. Scand J Gastroenterol, 2007, 42(10): 1167-1174.
[29] Münch A, Söderholm JD, Ost A, et al. Low levels of bile acids increase bacterial uptake in colonic biopsies from patients with collagenous colitis in remission[J]. Aliment Pharmacol Ther, 2011, 33(8): 954-960.
[30] Keitel V, Donner M, Winandy S, et al. Expression and function of the bile acid receptor TGR5 in Kupffer cells[J]. Biochem Biophys Res Commun, 2008, 372(1): 78-84.
[31] Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases[J]. Gut, 2013, 62(4): 531-539.
[32] Nalbantoglu S, Tabel Y, Mir S, et al. Lack of association between macrophage migration inhibitory factor gene promoter (-173 G/C) polymorphism and childhood Henoch-Schönlein purpura in Turkish patients[J]. Cytokine, 2013, 62(1): 160-164.
[33] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria[J]. J Lipid Res, 2006, 47(2): 241-259.
[34] Miyata M, Hayashi K, Yamakawa H, et al. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein[J]. Biol Pharm Bull, 2015, 38(3): 493-496.

基金

国家自然科学基金(81360068);云南省自然科学基金面上项目(2013FB137);“十二五”云南省特色学科建设项目(201109)。


PDF(1215 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/