
重症化脓性脑膜炎儿童血CD4+CD25+调节性T细胞的变化
许巍, 尹苗, 霍明超, 颜景礼, 杨洋, 刘春峰
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (9) : 821-825.
重症化脓性脑膜炎儿童血CD4+CD25+调节性T细胞的变化
Changes in blood CD4+CD25+ regulatory T cells in children with severe purulent meningitis
目的 初步探讨CD4+CD25+调节性T细胞 (Tregs)在儿童重症化脓性脑膜炎病程早期的变化及其可能的作用。方法 回顾性研究2014年8月至2015年12月入住PICU的39例严重化脓性脑膜炎患儿的临床资料,并根据患儿入院后12 h内血Tregs降低与否分为无Tregs降低组和Tregs降低组 (Tregs计数<410个/mm3为降低),分析早期Tregs改变与临床表现、实验室指标和转归的关系。结果 39例患儿中,13例 (33%)Tregs比例明显下降 (<31%),18例 (46%)Tregs绝对计数下降 (<410个/mm3)。4例病死患儿均来自于Tregs降低组。与无Tregs降低组比较,Tregs降低组患儿外周血白细胞低于正常的比例更高,血清降钙素原升高更显著 (P < 0.05)。结论 儿童重症化脓性脑膜炎患儿早期Tregs可能受到抑制,这与患儿炎症反应更重、病死率更高有关。
Objective To preliminarily study the changes in CD4+CD25+ regulatory T cells (Tregs) in children with severe purulent meningitis at the early stage and its possible implications. Methods A retrospective analysis was performed on the clinical data of 39 children with severe purulent meningitis who were admitted to the pediatric intensive care unit from August 2014 to December 2015. According to whether Tregs count was decreased within 12 hours of hospitalization (considering Tregs count <410/mm3 as decreased), they were divided into two groups:decrease group and non-decrease group. The associations between the changes in Tregs cells and the clinical manifestations, laboratory marker levels, and prognosis were analyzed. Results Of the 39 cases, 13 (33%) showed a decrease in the proportion of Tregs cells (<31%) and 18 (46%) showed a decrease in the absolute Tregs cell count (<410/mm3). Four deaths were all in the Tregs decrease group. Compared with the non-decrease group, the decrease group showed a significantly higher proportion of children with a peripheral blood leukocyte count lower than the normal range and a significantly greater increase in the level of serum procalcitonin (P < 0.05). Conclusions Tregs might be suppressed in children with severe purulent meningitis at the early stage. And its suppression could be related to the severer inflammation reaction and higher mortality in those patients.
CD4+CD25+调节性T细胞 / 化脓性脑膜炎 / 儿童
[1] van de Beek D. Progress and challenges in bacterial meningitis[J]. Lancet, 2012, 380(9854):1623-1624.
[2] Snelling TL, McIntyre PB. Assessing the effect of meningitis prevention and treatment[J]. Lancet Infect Dis, 2014, 14(9):780-781.
[3] Briand C, Levy C, Baumie F, et al. Outcomes of bacterial meningitis in children[J]. Med Mal Infect, 2016, 46(4):177-187.
[4] van de Beek D, de Gans J, Spanjaard L, et al. Clinical features and prognostic factors in adults with bacterial meningitis[J]. N Engl J Med, 2004, 351(18):1849-1859.
[5] Lucas MJ, Brouwer MC, van de Beek D. Neurological sequelae of bacterial meningitis[J]. J Infect, 2016, 73(1):18-27.
[6] Chiswick EL, Mella JR, Bernardo J, et al. Acute-phase deaths from murine polymicrobial sepsis are characterized by innate immune suppression rather than exhaustion[J]. J Immunol, 2015, 195(8):3793-802.
[7] Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS[J]. Crit Care Med, 1996, 24(7):1125-1128.
[8] Huo R, Wang L, Wang X, et al. Removal of regulatory T cells prevents secondary chronic infection but increases the mortality of subsequent sub-acute infection in sepsis mice[J]. Oncotarget, 2016, 7(10):10962-10975.
[9] Delano MJ, Ward PA. Sepsis-induced immune dysfunction:can immune therapies reduce mortality?[J]. J Clin Invest, 2016, 126(1):23-31.
[10] Yadav M, Stephan S, Bluestone JA. Peripherally induced Tregss-role in immune homeostasis and autoimmunity[J]. Front Immunol, 2013, 4:232.
[11] Markwart R, Condotta SA, Requardt RP, et al. Immunosuppression after sepsis:systemic inflammation and sepsis induce a loss of naïve T-cells but no enduring cell-autonomous defects in T-cell function[J]. PLoS One, 2014, 9(12):e115094.
[12] 万健, 单怡, 张冬青, 等. 脓毒症小鼠CD4+CD25+Foxp3+ T细胞变化及其意义[J]. 中华临床医师杂志(电子版), 2012, 6(15):249-253.
[13] 冷凤英. 脓毒症患者CD4+CD25+Foxp3+调节性T细胞及可溶性CD25分子水平研究[D]. 上海:上海交通大学, 2010.
[14] Takada H, Ishimura M, Takimoto T, et al. Invasive bacterial infection in patients with interleukin-1 receptor-associated Kinase 4 deficiency:case report[J]. Medicine (Baltimore), 2016, 95(4):e2437.
[15] Savva A, Brouwer MC, Roger T, et al. Calandra functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis[J]. Proc Natl Acad Sci U S A, 2016, 113(13):3597-3602.
[16] Elenga N, Sicard S, Cuadro-Alvarez E, et al. Pediatric bacterial meningitis in French Guiana[J]. Med Mal Infect, 2015, 45(11-12):441-445.
[17] Gensollen T, Iyer SS, Kasper DL, et al. How colonization by microbiota in early life shapes the immune system[J]. Science, 2016, 352(6285):539-544.
[18] van Vught LA, Klein Klouwenberg PM, Spitoni C, et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis[J]. JAMA, 2016, 315(14):1469-1479.
[19] Yang WY, Shao Y, Lopez-Pastrana J, et al. Pathological conditions re-shape physiological Tregs into pathological Tregs[J]. Burns Trauma, 2015, 3(1). pii:1.