
外源性端粒酶逆转录酶基因转染对新生大鼠缺氧缺血性脑损伤的神经保护作用
赵凤艳, 屈艺, 张莉, 黄兰, 刘海婷, 李姣, 母得志
中国当代儿科杂志 ›› 2016, Vol. 18 ›› Issue (12) : 1296-1301.
外源性端粒酶逆转录酶基因转染对新生大鼠缺氧缺血性脑损伤的神经保护作用
The neuroprotective role of exogenous TERT gene in neonatal rats with hypoxic-ischemic brain damage
目的 探讨端粒酶逆转录酶(TERT)对新生大鼠缺氧缺血性脑损伤(HIBD)后细胞凋亡的影响。方法 将72只新生大鼠分为假手术组、空质粒组、HIBD组和TERT组。用改良Rice法制备新生大鼠HIBD模型。采用苏木精-伊红染色法观察脑组织病理改变。空质粒组和TERT组分别于术后0.5 h,经侧脑室注射pcDNA3.1空质粒或TERT真核表达质粒pcDNA3.1-TERT。采用Western blot法检测各组大鼠脑组织TERT、凋亡诱导因子(AIF)和活化型半胱氨酸蛋白酶3(CC3)的蛋白表达水平;采用TUNEL法检测各组神经细胞凋亡情况。结果 与假手术组相比,HIBD组、空质粒组和TERT组大脑皮层中TERT蛋白表达增加(P < 0.01);与空质粒组和HIBD组相比,TERT组TERT蛋白表达明显增加(P < 0.01)。与假手术组相比,空质粒组和HIBD组AIF和CC3蛋白表达、细胞凋亡指数均显著增加(P < 0.01);与空质粒组和HIBD组相比,TERT组AIF和CC3蛋白表达、细胞凋亡指数均明显减少(P < 0.01)。结论 TERT可抑制缺氧缺血诱导的神经细胞凋亡,在新生大鼠HIBD中具有一定的神经保护作用。
Objective To study the effect of telomerase reverse transcriptase (TERT) on cell apoptosis in neonatal rat brains after hypoxic-ischemic brain injury (HIBD). Methods A total of 72 neonatal rats were divided into sham, vehicle, HIBD and TERT groups. HIBD was induced by Rice method in the later three groups. The neonatal rats in the vehicle and TERT groups were injected with plasmids containing mock or full length TERT by an intracerebroventricular injection 30 minutes after hypoxic-ischemic (HI) injury. Pathological changes of brain tissue were observed by hematoxylin and eosin (HE) staining. Western blot was used to detect the protein expression of TERT, apoptosis-inducing factor (AIF) and cleaved caspase 3 (CC3). Apoptotic cells were detected by TUNEL staining. Results Western blot showed that TERT protein was dramatically increased in the vehicle, HIBD and TERT groups compared with the sham group. Compared with the vehicle and HIBD groups, TERT protein in the TERT group was significantly upregulated. Compared with the sham group, there was a significant increase in apoptotic index and expression of AIF and CC3 proteins in the vehicle and HIBD groups (P < 0.01). The TERT group showed decreased expression of AIF and CC3 proteins and apoptotic index compared with the vehicle and HIBD groups (P < 0.01). Conclusions TERT can inhibit cell apoptosis induced by HI and might have a neuroprotective role in developing brain with HIBD.
缺氧缺血性脑损伤 / 端粒酶逆转录酶 / 细胞凋亡 / 新生大鼠
Hypoxic-ischemic brain injury / Telomerase reverse transcriptase / Cell apoptosis / Neonatal rats
[1] Descloux C, Ginet V, Clarke PG, et al. Neuronal death after perinatal cerebral hypoxia-ischemia:focus on autophagy-mediated cell death[J]. Int J Dev Neurosci, 2015, 45:75-85.
[2] Rocha-Ferreira E, Hristova M. Plasticity in the neonatal brain following hypoxic-ischaemic injury[J]. Neural Plast, 2016, 2016:4901014.
[3] Fu W, Killen M, Culmsee C, et al. The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function[J]. J Mol Neurosci, 2000, 14(1-2):3-15.
[4] Li J, Qu Y, Chen D, et al. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation[J]. Neuroscience, 2013, 252:346-358.
[5] Zhao F, Qu Y, Xiong T, et al. The neuroprotective role of TERT via an antiapoptotic mechanism in neonatal rats after hypoxia-ischemia brain injury[J]. Neurosci Lett, 2012, 515(1):39-43.
[6] Li L, Xiong Y, Qu Y, et al. The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 alpha in the developing rat brain after hypoxia-ischemia[J]. Acta Neuropathol, 2008, 115(3):297-303.
[7] Lange S. Peptidylarginine deiminases as drug targets in neonatal hypoxic-ischemic encephalopathy[J]. Front Neurol, 2016, 7:22.
[8] Perlman JM. Intervention strategies for neonatal hypoxic-ischemic cerebral injury[J]. Clin Ther, 2006, 28(9):1353-1365.
[9] Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy[J]. Early Hum Dev, 2010, 86(6):329-338.
[10] Mwaniki MK, Atieno M, Lawn JE, et al. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults:a systematic review[J]. Lancet, 2012, 379(9814):445-452.
[11] Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischaemic encephalopathy[J]. Cochrane Database Syst Rev, 2013, (1):CD003311.
[12] Kali GT, Martinez-Biarge M, Van Zyl J, et al. Therapeutic hypothermia for neonatal hypoxic-ischaemic encenphalopathy had favourable outcomes at a referral hospital in a middle-income country[J]. Acta Paediatr, 2016, 105(7):806-815.
[13] Gulczynska E, Gadzinowski J. Practical aspects of therapeutic hypothermia in neonates with hypoxic ischemic encephalopathy--questions and answers. Part I. providing newborn care before and during transfer to the reference center[J]. Dev Period Med, 2015, 19(3 Pt 1):247-253.
[14] Horn AR, Harrison MC, Linley LL. Evaluating a simple method of neuroprotective hypothermia for newborn infants[J]. J Trop Pediatr, 2010, 56(3):172-177.
[15] Robertson NJ, Nakakeeto M, Hagmann C, et al. Therapeutic hypothermia for birth asphyxia in low-resource settings:a pilot randomised controlled trial[J]. Lancet, 2008, 372(9641):801-803.
[16] 王菊莉, 韩玉昆. 新生大鼠缺氧缺血性脑损伤神经细胞凋亡时程[J]. 新生儿科杂志, 2003, 18(3):111-113.
[17] Klapper W, Shin T, Mattson MP. Differential regulation of telomerase activity and TERT expression during brain development in mice[J]. J Neurosci Res, 2001, 64(3):252-260.
[18] Mattson MP, Fu W, Zhang P. Emerging roles for telomerase in regulating cell differentiation and survival:a neuroscientist's perspective[J]. Mech Ageing Dev, 2001, 122(7):659-671.
[19] Caporaso GL, Lim DA, Alvarez-Buylla A, et al. Telomerase activity in the subventricular zone of adult mice[J]. Mol Cell Neurosci, 2003, 23(4):693-702.
[20] Baek S, Bu Y, Kim H, et al. Telomerase induction in astrocytes of Sprague-Dawley rat after ischemic brain injury[J]. Neurosci Lett, 2004, 363(1):94-96.
[21] 赵凤艳, 屈艺, 唐彬秩, 等. 新生大鼠缺氧缺血性脑损伤后细胞凋亡与端粒酶逆转录酶的表达[J]. 中国修复重建外科杂志, 2010, 24(5):588-593.
[22] Lee J, Jo YS, Sung YH, et al. Telomerase deficiency affects normal brain functions in mice[J]. Neurochem Res, 2010, 35(2):211-218.
[23] Ahmed S, Passos JF, Birket MJ, et al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress[J]. J Cell Sci, 2008, 121(Pt 7):1046-1053.
[24] Kang HJ, Choi YS, Hong SB, et al. Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity[J]. J Neurosci, 2004, 24(6):1280-1287.
国家自然科学基金(81300526;81330016;81270724);四川省科技厅基金(2014SZ0149;2016TD0002)。