mTOR/4EBP1/HIF-1α/VEGF信号通路在哮喘小鼠肺组织中的表达及意义

王莉, 张艳丽, 王秀芳, 宋哲, 王伟

中国当代儿科杂志 ›› 2017, Vol. 19 ›› Issue (1) : 104-110.

PDF(1391 KB)
HTML
PDF(1391 KB)
HTML
中国当代儿科杂志 ›› 2017, Vol. 19 ›› Issue (1) : 104-110. DOI: 10.7499/j.issn.1008-8830.2017.01.017
论著·实验研究

mTOR/4EBP1/HIF-1α/VEGF信号通路在哮喘小鼠肺组织中的表达及意义

  • 王莉, 张艳丽, 王秀芳, 宋哲, 王伟
作者信息 +

Expression and significance of mTOR/4EBP1/HIF-1α/VEGF signaling pathway in lung tissues of asthmatic mice

  • WANG Li, ZHANG Yan-Li, WANG Xiu-Fang, SONG Zhe, WANG Wei
Author information +
文章历史 +

摘要

目的 探讨哺乳动物雷帕霉素靶蛋白(mTOR)/真核生物始动因子4E结合蛋白1(4EBP1)/缺氧诱导因子-1α(HIF-1α)/血管内皮生长因子(VEGF)信号通路在哮喘小鼠中的表达及意义。方法 40只SPF级6~8周龄雌性Balb/c小鼠随机分为对照组、哮喘组、布地奈德干预组及mTOR抑制剂(雷帕霉素)干预组,每组10只。卵清蛋白致敏激发建立哮喘小鼠模型,各干预组分别在激发前30 min给予雷帕霉素3 mg/kg腹腔注射或布地奈德混悬液1 mg雾化吸入,对照组和哮喘组以生理盐水代替。于末次激发24 h后处死小鼠,收集肺泡灌洗液(BALF),采用ELISA法测定HIF-1α、VEGF水平;取肺组织行苏木精-伊红(HE)染色观察其病理变化;免疫组化染色和Western blot法测定肺组织磷酸化的mTOR及4EBP1(p-mTOR及p-4EBP1)蛋白表达水平。Pearson法分析p-mTOR、p-4EBP1、HIF-1α、VEGF表达的相关性。结果 与对照组相比,哮喘组气管及其周围炎性细胞浸润明显,分泌物增多;BALF中HIF-1α、VEGF水平显著升高(P < 0.01);肺组织 p-mTOR、p-4EBP1 表达显著增加(P < 0.01)。与哮喘组相比,各干预组气道炎症浸润明显减轻,分泌物减少;BALF中HIF-1α、VEGF水平明显下降(P < 0.01);肺组织p-mTOR、p-4EBP1表达显著降低(P < 0.01)。对照组及两干预组间相比上述指标变化差异均无统计学意义(P > 0.05)。哮喘组小鼠p-mTOR、p-4EBP1、HIF-1α、VEGF表达水平两两互呈正相关(P < 0.05),而对照组及两干预组各指标间无相关性(P > 0.05)。结论 哮喘发生时p-mTOR、p-4EBP1、HIF-1α、VEGF可能协同参与了哮喘的发病过程。雷帕霉素能阻断这一过程,可能作为治疗哮喘的新靶点。

Abstract

Objective To study the expression and significance of the mammalian target of rapamycin (mTOR)/eukaryote initiating factor 4E binding protein 1 (4EBP1)/hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway in asthmatic mice. Methods Forty SPF level 6-8 week-old female Balb/C mice were randomly divided into control, asthma, budesonide and mTOR inhibitor (rapamycin) intervention groups (n=10 each). The asthmatic mouse model was prepared via OVA induction and challenge test. The intervention groups were administered with rapamycin at the dosage of 3 mg/kg by an intraperitoneal injection or budesonide suspension at the dosage of l mg by aerosol inhalation respectively 30 minutes before the OVA challenge. The control and asthma groups were treated with normal saline instead. The concentrations of HIF-1α and VEGF in bronchoalveolar lavage fluid (BALF) were examined using ELISA 24 hours after the last challenge. The pathological changes of lung tissue were observed by hematoxylin-eosin (HE) staining. The p-mTOR and p-4EBP1 from the lung tissues were detected by immunohistochemistry and Western blot. Pearson analysis was used to study the correlation between p-mTOR, p-4EBP1, HIF-1α, and VEGF expression. Results Compared with the control group, inflammatory cell infiltration and secretions in the trachea increased in the asthma group. The levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues also increased (P < 0.01). Compared with the asthma group, inflammatory cell infiltration and secretions in the trachea were reduced in the two intervention groups, and the levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues were also reduced (P < 0.01). There were no significant differences in the above changes between the two intervention groups and control group (P > 0.05). In the asthma group, there was a pairwise positive correlation between lung p-mTOR and p-4EBP1 expression and HIF-1α and VEGF levels in BALF (P < 0.05). However, there were no correlations in the above indexes in the intervention groups and control group. Conclusions p-mTOR, p-4EBP1, HIF-1α and VEGF together are involved in the pathogenesis of asthma. Rapamycin treatment can block this signaling pathway, suggesting that this pathway can be used as a novel target for asthma treatment.

关键词

哮喘 / 哺乳动物雷帕霉素靶蛋白 / 真核生物始动因子4E结合蛋白1 / 缺氧诱导因子-1α / 血管内皮生长因子 / 小鼠

Key words

Asthma / Mammalian target of rapamycin / Eukaryote initiating factor 4E binding protein 1 / Hypoxia inducible factor-1α / Vascular endothelial growth factor / Mice

引用本文

导出引用
王莉, 张艳丽, 王秀芳, 宋哲, 王伟. mTOR/4EBP1/HIF-1α/VEGF信号通路在哮喘小鼠肺组织中的表达及意义[J]. 中国当代儿科杂志. 2017, 19(1): 104-110 https://doi.org/10.7499/j.issn.1008-8830.2017.01.017
WANG Li, ZHANG Yan-Li, WANG Xiu-Fang, SONG Zhe, WANG Wei. Expression and significance of mTOR/4EBP1/HIF-1α/VEGF signaling pathway in lung tissues of asthmatic mice[J]. Chinese Journal of Contemporary Pediatrics. 2017, 19(1): 104-110 https://doi.org/10.7499/j.issn.1008-8830.2017.01.017

参考文献

[1] Ferkol T, Schraufnagel D. The global burden of respiratory disease[J]. Ann Am Thorac Soc, 2014, 11(3):404-406.
[2] Lee GK, Shin H, Lim HJ. Rapamycin influences the efficiency of in vitro fertilization and development in the mouse:a role for autophagic activation[J]. Asian-Australas J Anim Sci, 2016, 29(8):1102-1110.
[3] 朱广倍, 周维英, 蔡家利. mTOR调节免疫细胞分化与功能的研究进展[J]. 免疫学杂志, 2016, 32(2):173-176.
[4] 罗云海, 欧立文, 李晓玲. 哮喘大鼠气道中雷帕霉素靶蛋白的表达对气道重塑的影响[J]. 实用医学杂志, 2013, 29(2):190-192.
[5] Mi C, Ma J, Shi H, et al. 4',6-dihydroxy-4-methoxyisoaurone inhibits the HIF-1α pathway through inhibition of Akt/mTOR/p70S6K/4E-BP1 phosphorylation[J]. J Pharmacol Sci, 2014, 125(2):193-201.
[6] Crotty Alexander LE, Akong-Moore K, Feldstein S, et al. Myeloid cell HIF-1α regulates asthma airway resistance and eosinophil function[J]. J Mol Med (Berl), 2013, 91(5):637-644.
[7] Kim SR, Lee KS, Park HS, et al. HIF-1α inhibition ameliorates an allergic airway disease via VEGF suppression in bronchial epithelium[J]. Eur J Immunol, 2010, 40(10):2858-2869.
[8] Lee CG, Ma B, Takyar S, et al. Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 2011, 8(6):512-515.
[9] Mushaben EM, Kramer EL, Brandt EB, et al. Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma[J]. J Immunol, 2011, 187(11):5756-5763.
[10] Kramer EL, Hardie WD, Mushaben EM, et al. Rapamycin decreases airway remodeling and hyperreactivity in a transgenic model of noninflammatory lung disease[J]. J Appl Physiol (1985), 2011, 111(6):1760-1767.
[11] Eynott PR, Salmon M, Huang TJ, et al. Effects of cyclosporin A and a rapamycin derivative (SAR943) on chronic allergic inflammation in sensitized rats[J]. Immunology, 2003, 109(3):461-467.
[12] Mo JH, Kim JH, Lim DJ, et al. The role of hypoxia-inducible factor 1α in allergic rhinitis[J]. Am J Rhinol Allergy, 2014, 28(2):e100-e106.
[13] Huerta-Yepez S, Baay-Guzman GJ, Bebenek IG, et al. Hypoxia inducible factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis[J]. Allergy, 2011, 66(7):909-918.
[14] Yuksel H, Yilmaz O, Karaman M, et al. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma[J]. Ann Allergy Asthma Immunol, 2013, 110(3):150-155.
[15] Chen MC, Hsu WL, Hwang PA, et al. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia[J]. Mar Drugs, 2015, 13(7):4436-4451.
[16] Choi YH, Jin GY, Li LC, et al. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway[J]. PLoS One, 2013, 8(11):e81773.

基金

2015年度河南省医学科技攻关计划项目(201503114)。


PDF(1391 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/