
不同胎龄早产儿生后早期对脂肪乳的耐受性研究
唐慧, 杨传忠, 李欢, 文伟, 黄芳芳, 黄智峰, 石玉萍, 余彦亮, 陈丽莲, 袁瑞琴, 朱小瑜
中国当代儿科杂志 ›› 2017, Vol. 19 ›› Issue (6) : 632-637.
不同胎龄早产儿生后早期对脂肪乳的耐受性研究
Fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth
目的 分析不同出生胎龄早产儿生后早期对脂肪乳的耐受性。方法 98例早产儿分为超早产儿组(n=17)、早期早产儿组(n=48)和中晚期早产儿组(n=33),再根据脂肪乳剂量分为低剂量脂肪乳与高剂量两个亚组,留取脐血及生后前3 d的血干滤纸片,用串联质谱法检测短、中、长链酰基肉碱含量。结果 超早产儿组与早期早产儿组脐血及生后前3 d长链酰基肉碱浓度均低于中晚期早产儿组(P < 0.05),且长链酰基肉碱浓度与胎龄呈正相关(P < 0.01)。超早产儿低剂量脂肪乳组生后第2天的短、中、长链酰基肉碱浓度均高于高剂量组(P < 0.05),而早期早产儿与中晚期早产儿不同剂量脂肪乳亚组的生后3 d短、中、长链酰基肉碱浓度差异均无统计学意义。结论 超早产儿和早期早产儿生后前3 d对长链脂肪酸的代谢能力均低于中晚期早产儿;早期早产儿与中晚期早产儿生后早期可以耐受高剂量脂肪乳,但超早产儿生后早期对高剂量脂肪乳代谢能力可能不足。
Objective To investigate the fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth. Methods A total of 98 preterm infants were enrolled and divided into extremely preterm infant group (n=17), early preterm infant group (n=48), and moderate-to-late preterm infant group (n=33). According to the dose of fat emulsion, they were further divided into low-and high-dose subgroups. The umbilical cord blood and dried blood filter papers within 3 days after birth were collected. Tandem mass spectrometry was used to measure the content of short-, medium-, and long-chain acylcarnitines. Results The extremely preterm infant and early preterm infant groups had a significantly lower content of long-chain acylcarnitines in the umbilical cord blood and dried blood filter papers within 3 days after birth than the moderate-to-late preterm infant group (P < 0.05), and the content was positively correlated with gestational age (P < 0.01). On the second day after birth, the low-dose fat emulsion subgroup had a significantly higher content of short-, medium-, and long-chain acylcarnitines than the high-dose fat emulsion subgroup among the extremely preterm infants (P < 0.05). In the early preterm infant and moderate-to-late preterm infant groups, there were no significant differences in the content of short-, medium-, and long-chain acylcarnitines between the low-and high-dose fat emulsion subgroups within 3 days after birth. Conclusions Compared with moderate-to-late preterm infants, extremely preterm infants and early preterm infants have a lower capacity to metabolize long-chain fatty acids within 3 days after birth. Early preterm infants and moderate-to-late preterm infants may tolerate high-dose fat emulsion in the early stage after birth, but extremely preterm infants may have an insufficient capacity to metabolize high-dose fat emulsion.
脂肪乳 / 代谢组学 / 酰基肉碱 / 串联质谱 / 早产儿
Fat emulsion / Metabolomics / Acylcarnitine / Tandem mass spectrometry / Preterm infant
[1] Berthold K, Olivier G, Joanne H, et al. For the parenteral nutrition guidelines working group:guidelines on paediatric parenteral nutrition of the European society of paediatric gastroenterology, hepatology and nutrition (ESPGHAN) and the European society for clinical nutrition and metabolism (ESPEN), supported by the European society of paediatric[J]. J Pediatr Gastroenterol Nutr, 2005, 41(Suppl 2):S1-S87.
[2] Guellec I, Gascoin G, Beuchee A, et al. Biological impact of recent guidelines on parenteral nutrition in preterm infants[J]. J Pediatr Gastroenterol Nutr, 2015, 61(6):605-609.
[3] Vlaardingerbroek H, van Goudoever JB. Intravenous lipids in preterm infants:impact on laboratory and clinical outcomes and long-term consequences[J]. World Rev Nutr Diet, 2015, 112:71-80.
[4] Kao LC, Cheng MH, Warburton D. Triglycerides, free fatty acids, free fatty acids/albumin molar ratio, and cholesterol levels in serum of neonates receiving long-term lipid infusions:controlled trial of continuous and intermittent regimens[J]. J Pediatr, 1984, 104(3):429-435.
[5] 中华医学会肠外肠内营养学分会儿科协作组, 中华医学会儿科学分会新生儿学组,中华医学会小儿外科学分会新生儿学组. 中国新生儿营养支持临床应用指南[J]. 临床儿科杂志, 2013, 31(12):1177-1182.
[6] Hellgren G, Engström E, Smith LE, et al. Effect of preterm birth on postnatal apolipoprotein and adipocytokine profiles[J]. Neonatology, 2015, 108(1):16-22.
[7] Hay WW Jr, Brown LD, Denne SC. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants[J]. World Rev Nutr Diet, 2014, 110:64-81.
[8] Hannah Blencowe, Simon Cousens, Doris Chou, et al. 15 million preterm births:priorities for action based on national, regional and global estimates[DB/OL]. (2012-05-12)[2017-01-19]. http://www.who.int/pmnch/media/news/2012/borntoosoon_chapter2.pdf.
[9] Stephens BE, Walden RV, Gargus RA, et al. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants[J]. Pediatrics, 2009, 123(5):1337-1343.
[10] Senterre T, Terrin G, De Curtis M, et al. Parenteral nutrition in premature infants[M]//Guandalini S, Dhawan A, Branski D Cham. Textbook of pediatric gastroenterology, hepatology and nutrition:a comprehensive guide to practice. Switzerland:Springer International Publishing, 2016:73-86.
[11] Hay WW Jr. Aggressive nutrition of the preterm infant[J]. Curr Pediatr Rep, 2013, 1(4):doi:10.1007/s40124-013-0026-4.
[12] Su BH. Optimizing nutrition in preterm infants[J]. Pediatr Neonat, 2014, 55(1):5-13.
[13] Aldana-Valenzuela C. Early aggressive nutrition in premature infants:is this the best approach[J]. J Pediatr Gastr Nutr, 2015, 61(3):269-270.
[14] Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns[J]. Clin Chem, 2003, 49(11):1797-1817.
[15] Borum PR. Carnitine homeostasis in humans[M]//Wall BT, Porter C. Carnitine metabolism and human nutrition. Newyork:CRC Press:Taylor & Francis Group, 2014:3-10.
[16] Altamimi TR, Lopaschuk GD. Role of carnitine in modulation of muscle energy metabolism and insulin resistance[M]//Wall BT, Porter C. Carnitine metabolism and human nutrition. Newyork:CRC Press:Taylor & Francis Group, 2014:11-27.
[17] Clark RH, Kelleher AS, Chace DH, et al. Gestational age and age at sampling influence metabolic profiles in premature infants[J]. Pediatrics, 2014, 134(1):e37-e46.
深圳市科技计划项目(201201025)。