
儿童重症社区获得性肺炎病原体分布及细菌耐药情况分析
Pathogen distribution and bacterial resistance in children with severe community-acquired pneumonia
目的 了解儿童重症社区获得性肺炎(CAP)的病原分布及细菌耐药情况,为临床诊疗提供依据。方法 选取2016年住院治疗的522例重症CAP患儿为研究对象。按照年龄分为婴儿组(28 d~,n=402),幼儿组(1岁~,n=73),学龄前期组(3岁~,n=35),学龄期组(≥ 6岁,n=12);按照发病季节分为春季组(3~5月份,n=120),夏季组(6~8月份,n=93),秋季组(9~11月份,n=105),冬季组(12~2月份,n=204)。采集所有患儿气道深部痰液标本,采用phoenix-100全自动细菌鉴定系统进行菌种鉴定及药敏试验;采用直接免疫荧光法检测呼吸道7种病毒;采用荧光定量PCR技术检测肺炎支原体(MP)和沙眼衣原体(CT)。结果 522例重症CAP患儿中,419例(80.3%)病原体检出阳性,其中混合感染190例(45.3%);共检出病原体681株,包括细菌371株(54.5%),病毒259株(38.0%),真菌12株(1.8%),MP 15株(2.2%),CT 24株(3.5%)。细菌、病毒、MP、真菌感染分别在不同年龄组间分布比率比较差异有统计学意义(P < 0.05)。病毒感染发生率在不同季节间比较差异有统计学意义(P < 0.05),且在冬季高发。肺炎链球菌对红霉素、四环素、克林霉素耐药率高达85%以上;金黄色葡萄球菌对青霉素、红霉素、克林霉素的耐药率达50%以上;但两者对万古霉素、利奈唑胺均敏感。流感嗜血杆菌对头孢克洛、头孢呋辛等的耐药率达60%以上,但对头孢噻肟敏感;大肠埃希菌、肺炎克雷伯菌对氨苄西林、头孢噻肟、头孢曲松等的耐药率达60%以上,但对碳青霉烯类抗生素、酶抑制剂复方制剂敏感。结论 重症CAP患儿感染主要病原体为细菌,混合感染较普遍,且细菌耐药情况严峻。
Objective To investigate the distribution of pathogens and bacterial resistance in children with severe community-acquired pneumonia (CAP). Methods A total of 522 children with severe CAP who were hospitalized in 2016 were enrolled as study subjects. According to their age, they were divided into infant group (402 infants aged 28 days to 1 year), young children group (73 children aged 1 to 3 years), preschool children group (35 children aged 3 to 6 years), and school-aged children group (12 children aged ≥ 6 years). According to the onset season, all children were divided into spring group (March to May, 120 children), summer group (June to August, 93 children), autumn group (September to November, 105 children), and winter group (December to February, 204 children). Sputum specimens from the deep airway were collected from all patients. The phoenix-100 automatic bacterial identification system was used for bacterial identification and drug sensitivity test. The direct immunofluorescence assay was used to detect seven common respiratory viruses. The quantitative real-time PCR was used to detect Mycoplasma pneumoniae (MP) and Chlamydia trachomatis (CT). Results Of all the 522 children with severe CAP, 419 (80.3%) were found to have pathogens, among whom 190 (45.3%) had mixed infection. A total of 681 strains of pathogens were identified, including 371 bacterial strains (54.5%), 259 viral strains (38.0%), 12 fungal strains (1.8%), 15 MP strains (2.2%), and 24 CT strains (3.5%). There were significant differences in the distribution of bacterial, viral, MP, and fungal infections between different age groups (P < 0.05). There were significant differences in the incidence rate of viral infection between different season groups (P < 0.05), with the highest incidence rate in winter. The drug-resistance rates of Streptococcus pneumoniae to erythromycin, tetracycline, and clindamycin reached above 85%, and the drug-resistance rates of Staphylococcus aureus to penicillin, erythromycin, and clindamycin were above 50%; they were all sensitive to vancomycin and linezolid. The drug-resistance rates of Haemophilus influenzae to cefaclor and cefuroxime were above 60%, but it was sensitive to cefotaxime. The drug-resistance rates of Escherichia coli and Klebsiella pneumoniae to ampicillin, cefotaxime, and ceftriaxone were above 60%, but they were sensitive to carbapenems and compound preparation of enzyme inhibitors. Conclusions Bacteria are the main pathogens in children with severe CAP and mixed infection is prevalent. The drug-resistance rates of these pathogenic bacteria are high.
Severe community-acquired pneumonia / Pathogen / Drug resistance / Child
[1] Zar HJ, Barnett W, Myer L, et al. Chilhood pneumonia-the Drakenstein Child Health Study[J]. S Afr Med J, 2016, 106(7):642-643.
[2] Kurz H, Göpfrich H, Huber K, et al. Spectrum of pathogens of in-patient children and youths with community acquired pneumonia:a 3 year survey of a community hospital in Vienna, Austria[J]. Wien Klin Wochenschr, 2013, 125(21-22):674-679.
[3] Chkhaidze I, Manjavidze N, Nemsadze K. Serodiagnosis of acute respiratory infections in children in Georgia[J]. Indian J Pediatr, 2006, 73(7):569-572.
[4] Feldman C, Anderson R. Antibiotic resistance of pathogens causing community-acquired pneumonia[J]. Semin Respir Crit Care Med, 2012, 33(3):232-243.
[5] 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童社区获得性肺炎管理指南(2013修订)(下)[J].中华儿科杂志, 2013, 51(11):856-862.
[6] 蒲开彬, 黄英. 重庆地区儿童重症肺炎病原学回顾性分析[J]. 临床儿科杂志, 2016, 34(4):264-267.
[7] 陈金妮. 600例儿童社区获得性肺炎病原学特点分析[J]. 中国病原生物学杂志, 2016, 11(12):1126-1130.
[8] 彭懿, 舒畅, 符州, 等. 儿童社区获得性肺炎1613例病原学特点分析[J]. 中国当代儿科杂志, 2015, 17(11):1193-1199.
[9] 刘翔腾, 王桂兰, 罗序锋, 等. 儿童社区获得性肺炎病原微生物分布特点分析[J]. 中国当代儿科杂志, 2013, 15(1):42-45.
[10] 罗征秀, 刘恩梅, 符州, 等. 重庆地区儿童社区获得性肺炎病原体及细菌药敏分析[J]. 儿科药学杂志, 2005, 11(1):4-6.
[11] 李长春, 朱玉林, 王亚亭, 等. 509例儿童社区获得性肺炎病原体及临床特征分析[J]. 安徽医药, 2016, 20(4):699-702.
[12] 刘霞, 马静, 张忠晓, 等. 儿童重症肺炎2044例肺泡灌洗液细菌病原学分析[J]. 中国实用儿科杂志, 2014, 29(6):438-441.
[13] De Schutter I, De Wachter E, Crokaert F, et al. Microbiology of bronchoalveolar lavage fluid in children with acute nonresponding or recurrent community-acquired pneumonia:identification of nontypeable Haemophilus influenzae as a major pathogen[J]. Clin Infect Dis, 2011, 52(12):1437-1444.
[14] 罗蓉, 黄英, 罗晓菊, 等. 重庆儿童急性呼吸道感染1731例病毒病原学分析[J]. 重庆医科大学学报, 2007, 32(12):1279-1346.
[15] Peng D, Zhao D, Liu J, et al. Multipathogen infections in hospitalized children with acute respiratory infections[J]. Virol J, 2009, 6:155.
[16] 刘俊英. 儿童社区获得性肺炎病原体及细菌药敏结果分析[J]. 中国病原生物学杂志, 2012, 7(11):855-857.
[17] Yu Y, Fei A. Atypical pathogen infection in community-acquired pneumonia[J]. Biosci Trends, 2016, 10(1):7-13.
[18] 徐莉燕. 儿童社区获得性肺炎578例回顾性分析[D]. 郑州:郑州大学, 2014.
[19] 杨晓华, 谭南, 林爱心, 等. 儿童呼吸道流感嗜血杆菌的耐药性分析[J]. 中国感染与化疗杂志, 2014, 14(5):436-439.
[20] 沈继录, 潘亚萍, 徐元宏, 等. 2005-2014年CHINET大肠埃希菌耐药性监测[J]. 中国感染与化疗杂志, 2016, 16(2):129-140.
[21] 胡志军, 潘晓龙, 周东升, 等. 肺炎克雷伯菌感染的临床分布及耐药性监测[J]. 中华医院感染学杂志, 2014, 24(12):2865-2867.
[22] 刘立涛, 万莉红, 邵振俊, 等. I类整合子介导大肠埃希菌与肺炎克雷伯菌耐药机制的初步研究[J]. 中国抗生素杂志, 2012, 37(2):132-136.
[23] 景春梅, 王偲. 2009-2014年重庆地区儿童感染肺炎链球菌的耐药性及血清分型研究[J]. 中国抗生素杂志, 2016, 41(1):64-69.
[24] 李丽民, 吴先华, 徐礼峰, 等. 金黄色葡萄球菌的临床分布及耐药性分析[J]. 中华医院感染学杂志, 2014, 24(4):787-789.