
遗传性癫癎与药物精准治疗的研究进展
Research advances in hereditary epilepsy and precision drug therapy
癫癎是一种常见的神经系统疾病,其发病与多种基因突变有关,包括编码电压依赖离子通道基因、编码配体门控通道基因和溶质携带子家族基因等。不同突变基因所致的癫癎对药物的反应可能大不相同,因此根据基因进行诊断和用药指导是癫癎治疗的新思路。随着新一代基因测序技术的应用,越来越多的癫癎相关基因被检测出来,有助于癫癎发病机制的进一步研究,为癫癎的精准治疗提供依据。
Epilepsy is a common nervous system disease. It has been found that the pathogenesis of epilepsy is associated mutations in various genes, including genes encoding voltage-dependent ion channel, genes encoding ligand-gated ion channel, and solute carrier family genes. Different types of epilepsy caused by different mutations have different responses to drugs, and therefore, diagnosis and medication guidance based on genes are new thoughts for developing therapies. With the application of next-generation sequencing technology, more and more genes will be determined, which helps to further study the pathogenic mechanism of mutant genes and provides a basis for precision drug therapy for epilepsy.
[1] Pal DK, Pong AW, Chung WK. Genetic evaluation and counseling for epilepsy[J]. Nat Rev Neurol, 2010, 6(8):445-453.
[2] Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family[J]. Genome Biol, 2003, 4(3):207.
[3] 张丽敏, 康熙雄, 张国军. 钠离子通道基因SCN1A、SCN2A、SCN1B突变与癫癎[J]. 中国医药生物技术, 2013, 8(1):62-65.
[4] Lossin C. A catalog of SCN1A variants[J]. Brain Devel, 2009, 31(2):114-130.
[5] Kanellopoulos AH, Matsuyama A. Voltage-gated sodium channels and pain-related disorders[J]. Clin Sci (Lond), 2016, 130(24):2257-2265.
[6] 李丹, 黄绍平, 宋婷婷,等. SCN1A基因突变阳性的Dravet综合征患儿的临床特征分析[J]. 西安交通大学学报(医学版), 2016, 37(6):841-845.
[7] Chapman KE, Specchio N, Shinnar S, et al. Seizing control of epileptic activity can improve outcome[J]. Epilepsia, 2015, 56(10):1482-1485.
[8] Wilmshurst JM, Berg AT, Lagae L, et al. The challenges and innovations for therapy in children with epilepsy[J]. Nat Rev Neurol, 2014, 10(5):249-260.
[9] Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy)[J]. Handb Clin Neurol, 2013, 111:627-633.
[10] 孔玮晶, 姜玉武. 遗传相关性癫癎离子通道与遗传性癫癎[J]. 中国实用儿科杂志, 2015, 30(7):481-487.
[11] 李宁, 陈言钊, 周克英. 儿童热性惊厥临床特征及其变化趋势[J]. 中国当代儿科杂志, 2015, 17(2):176-179.
[12] Cooper EC. Made for "anchorin":Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons[J]. Semin Cell Dev Biol, 2010, 22(2):185-192.
[13] Orhan G, Bock M, Schepers D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy[J]. Ann Neurol, 2014, 75(3):382-394.
[14] Millichap JJ, Park KL, Tsuchida T, et al. KCNQ2 encephalopathy:Features, mutational hot spots, and ezogabine treatment of 11 patients[J]. Neurol Genet, 2016, 2(5):e96.
[15] Soldovieri MV, Castaldo P, Iodice L, et al. Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions[J]. J Biol Chem, 2006, 281(1):418-428.
[16] Zhang X, Jakubowski M, Buettner C, et al. Ezogabine (KCNQ2/3 channel opener) prevents delayed activation of meningeal nociceptors if given before but not after the occurrence of cortical spreading depression[J]. Epilepsy Behav, 2013, 28(2):243-248.
[17] Nassoiy SP, Byron KL, Majetschak M. Kv7 voltage-activated potassium channel inhibitors reduce fluid resuscitation requirements after hemorrhagic shock in rats[J]. J Biomed Sci, 2017, 24(1):8.
[18] 王丹, 高颖, 刘婷立, 等. 抗癫癎新药瑞替加滨[J]. 中国新药杂志, 2012, 21(5):467-469.
[19] Qu J, Zhang Y, Yang ZQ, et al. Gene-wide tagging study of the association between KCNT1 polymorphisms and the susceptibility and efficacy of genetic generalized epilepsy in Chinese population[J].CNS Neurosci Ther, 2014, 20(2):140-146.
[20] Lim CX, Ricos MG, Dibbens LM. KCNT1 mutations in seizure disorders:the phenotypic spectrum and functional effects[J]. J Med Genet, 2016, 53(4):217-225.
[21] Yang B, Gribkoff VK, Pan J, et al. Pharmacological activation and inhibition of Slack (Slo2.2) channels[J]. Neuropharmacology, 2006, 51(4):896-906.
[22] Ozsu E, Giri D, Seymen KG, et al. Successful transition to sulfonylurea therapy in two Iraqi siblings with neonatal diabetes mellitus and iDEND syndrome due to ABCC8 mutation[J]. J Pediatr Endocrinol Metab, 2016, 29(12):1403-1406.
[23] Strupp M, Kalla R, Freilinger T, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia——a comment[J]. Brain, 2005, 128(Pt6):E32.
[24] 姜玉武, 谢涵. 特发性全面性癫癎的遗传学研究进展[J]. 北京大学学报(医学版), 2013, 45(2):186-191.
[25] Peloquin JB, Khosravani H, Barr W, et al. Functional analysis of Cav 3.2 T-type calcium channel mutations linked to childhood absence epilepsy[J]. Epilepsia, 2006, 47(3):655-658.
[26] Cain SM, Snutch TP. Voltage-gated calcium channels and disease[J]. Biofactors, 2011, 37(3):197-205.
[27] Weltzin MM, Lindstrom JM, Lukas RJ, et al. Distinctive effects of nicotinic receptor intracellular-loop mutations associated with nocturnal frontal lobe epilepsy[J]. Neuropharmacology, 2015, 102:158-173.
[28] Shiba Y, Mori F, Yamada J, et al. Spontaneous epileptic seizures in transgenic rats harboring a human ADNFLE missense mutation in the β2-subunit of the nicotinic acetylcholine receptor[J]. Neurosci Res, 2015, 100:46-54.
[29] Nichols WA, Henderson BJ, Marotta CB, et al. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression[J]. PLoS One, 2016, 11(6):e0158032.
[30] Becchetti A, Aracri P, Meneghini S, et al. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy[J]. Front Physiol, 2015, 6:22.
[31] Maljevic S, Krampfl K, Cobilanschi J, et al. A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy[J]. Ann Neurol, 2006, 59(6):983-987.
[32] Hirose S. Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy[J]. Prog Brain Res, 2014, 213:55-85.
[33] Johannesen K, Marini C, Pfeffer S, et al. Phenotypic spectrum of GABRA1:From generalized epilepsies to severe epileptic encephalopathies[J]. Neurology, 2016, 87(11):1140-1151.
[34] Gurba KN, Hernandez CC, Hu N, et al. GABRB3 mutation, G32R, associated with childhood absence epilepsy alters α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor expression and channel gating[J]. J Biol Chem, 2012, 287(15):12083-12097.
[35] Tanaka M, Olsen RW, Medina MT, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy[J]. Am J Human Genet, 2008, 82(6):1249-1261.
[36] Reid CA, Kim T, Phillips AM, et al. Multiple molecular mechanisms for a single GABAA mutation in epilepsy[J]. Neurology, 2013, 80(11):1003-1008.
[37] Kang JQ, Shen W, Macdonald RL. Two molecular pathways (NMD and ERAD) contribute to a genetic epilepsy associated with the GABA(A) receptor GABRA1 PTC mutation, 975delC, S326fs328X[J]. J Neurosci, 2009, 29(9):2833-2844.
[38] Hatch J, Coman D, Clayton P, et al. Normal neurodevelopmental outcomes in PNPO deficiency:a case series and literature review[J]. JIMD Rep, 2016, 26:91-97.
[39] 杨志仙, 薛娇. 维生素B6相关性癫癎[J]. 中华实用儿科临床杂志, 2016, 31(24):1841-1848.
[40] Mills PB, Camuzeaux SS, Footitt EJ, et al. Epilepsy due to PNPO mutations:genotype, environment and treatment affect presentation and outcome[J]. Brain, 2014, 137(5):1350-1360.
[41] Wang HS, Kuo MF, Chou ML, et al. Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy[J]. Arch Dis Child, 2005, 90(5):512-515.
[42] Gospe SM Jr. Pyridoxine-dependent seizures:new genetic and biochemical clues to help with diagnosis and treatment[J]. Curr Opin Neurol, 2006, 19(2):148-153.
[43] Zhou Y, Wu H, Xu S, et al. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO phosphazane ligands[J]. Dalton Trans, 2015, 44(20):9545-9550.
[44] Hunt AD Jr, Stokes J Jr, McCrory WW, et al. Pyridoxine dependency:report of a case of intractable convulsions in an infant controlled by pyridoxine[J]. Pediatrics, 1954, 13(2):140-145.
[45] Bagci S, Zschocke J, Hoffmann GF, et al. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy[J]. Arch Dis Child Fetal Neonatal Ed, 2008, 93(2):F151-152.
[46] 薛姣, 杨志仙, 张月华,等. 磷酸吡哆醇(胺)氧化酶缺乏症2例的临床特征及基因突变分析[J]. 中华实用儿科临床杂志, 2016, 31(16):1265-1269.
[47] 杨志仙, 秦炯. 吡哆醇依赖性癫癎的临床及分子遗传学研究进展[J]. 中华儿科杂志, 2013, 51(11):867-870.
[48] Kuo MF, Wang HS. Pyridoxal phosphate-responsive epilepsy with resistance to pyridoxine[J]. Pediatr Neurol, 2002, 26(2):146-147.
[49] Rammpettersen A, Stabell KE, Nakken KO, et al. Does ketogenic diet improve cognitive function in patients with GLUT1-DS? A 6- to 17-month follow-up study[J]. Epilepsy Behav, 2014, 39:111-115.
[50] Jen JC, Wan J, Palos TP, et al. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures[J]. Neurology, 2005, 65(4):529-534.
[51] Mishra M, Singh R, Mukherjee S, et al. Dehydroepiandrosterone's antiepileptic action in FeCl3-induced epileptogenesis involves upregulation of glutamate transporters[J]. Epilepsy Res, 2013, 106(1-2):83-91.
[52] Palmer S, Towne MC, Pearl PL, et al. SLC6A1 mutation and ketogenic diet in epilepsy with myoclonic-atonic seizures[J]. Pediatr Neurol, 2016, 64:77-79.
[53] Carvill GL, McMahon JM, Schneider A, et al. Mutations in the GABA transporter SLC6A1 cause epilepsy with myoclonic-atonic seizures[J]. Am J Hum Genet, 2015, 96(5):808-815.
[54] Enoch MA, Hodgkinson CA, Shen PH, et al. GABBR1 and SLC6A1, two Genes involved in modulation of GABA synaptic transmission, influence risk for alcoholism:results from three ethnically diverse populations[J]. Alcohol Clin Exp Res, 2016, 40(1):93-101.
[55] Schousboe A, Madsen KK, Barkerhaliski ML, et al. The GABA synapse as a target for antiepileptic drugs:a historical overview focused on GABA transporters[J]. Neurochem Res, 2014, 39(10):1980-1987.
[56] Crino PB. The mTOR signalling cascade:paving new roads to cure neurological disease[J]. Nat Rev Neurol, 2016, 12(7):379-392.
[57] Abe N, Borson SH, Gambello MJ, et al. Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves[J]. J Biol Chem, 2010, 285(36):28034-28043.
[58] Wang Y, Greenwood JS, Calcagnotto ME, et al. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1[J]. Ann Neurol, 2007, 61(2):139-152.
[59] Meng XF, Yu JT, Song JH, et al. Role of the mTOR signaling pathway in epilepsy[J]. J Neurol Sci, 2013, 332(1-2):4-15.
[60] Tyndall J. Everolimus alters white matter diffusion in tuberous sclerosis complex[J]. Neurology, 2012, 78(8):526-531.
[61] Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex[J]. Ann Neurol, 2013, 74(5):679-687.
[62] Jie W, Lin ZJ, Liu L, et al. Epilepsy-associated genes[J]. Seizure, 2017, 44:11-20.
[63] Emond MR, Biswas S, Blevins CJ, et al. A complex of Protocadherin-19 and N-cadherin mediates a novel mechanism of cell adhesion[J]. J Cell Biol, 2011, 195(7):1115-1121.
[64] Lu Z, Reddy MV, Liu J, et al. Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2)[J]. J Biol Chem, 2016, 291(46):24133-24147.
[65] Higurashi N, Takahashi Y, Kashimada A, et al. Immediate suppression of seizure clusters by corticosteroids in PCDH19 female epilepsy[J]. Seizure, 2015, 27:1-5.
[66] Gupta A. STXBP1-related EOEE-early onset epilepsy and encephalopathy, or is it early onset epileptic encephalopathy[J]. Epilepsy Currents, 2016, 16(5):302-304.
[67] Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy:A neurodevelopmental disorder including epilepsy[J]. Neurology, 2016, 86(10):954-962.
[68] Davies J, Zachariades E, Rogers-Broadway KR, et al. Elucidating the role of DEPTOR in Alzheimer's disease[J]. Int J Mol Med, 2014, 34(5):1195-1200.
[69] Perucca P, Scheffer IE, Harvey AS, et al. Real-world utility of whole exome sequencing with targeted gene analysis for focal epilepsy[J]. Epilepsy Research, 2017, 131:1-8.
[70] Carvill GL, Crompton DE, Regan BM, et al. Epileptic spasms are a feature of DEPDC5 mTORopathy[J]. Neurol Genet, 2015, 1(2):e17.