Abstract:Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
WANG Jie,WANG Feng,GUI Yong-Hao. Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus[J]. CJCP, 2017, 19(12): 1297-1300.
van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide:A systematic review and meta-analysis[J]. J Am Coll Cardiol, 2011, 58(21):2241-2247.
[2]
Jorgensen M, McPherson E, Zaleski C, et al. Stillbirth:the heart of the matter[J]. Am J Med Genet A, 2014, 164A(3):691-699.
[3]
Triedman JK, Newburger JW. Trends in congenital heart disease:the next decade[J]. Circulation, 2016, 133(25):2716-2733.
[4]
Chatfield KC, Schrier SA, Li J, et al. Congenital heart disease in Cornelia de Lange syndrome:phenotype and genotype analysis[J]. Am J Med Genet A, 2012, 158A(10):2499-2505.
[5]
Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease[J]. Nature, 2013, 498(7453):220-223.
[6]
Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing[J]. Nat Genet, 2016, 48(9):1060-1065.
[7]
Wang D, Wang F, Shi KH, et al. Lower circulating folate induced by a fidgetin intronic variant is associated with reduced congenital heart disease susceptibility[J]. Circulation, 2017, 135(18):1733-1748.
[8]
Zhao JY, Qiao B, Duan WY, et al. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations[J]. Eur Heart J, 2014, 35(11):733-742.
[9]
Smedts HP, de Vries JH, Rakhshandehroo M, et al. High maternal vitamin E intake by diet or supplements is associated with congenital heart defects in the offspring[J]. BJOG, 2009, 116(3):416-423.
[10]
Linask KK, Han M. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development:Folate prevention[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(9):749-760.
[11]
Han M, Evsikov AV, Zhang L, et al. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation[J]. Reprod Toxicol, 2016, 61:82-96.
[12]
Loffredo CA, Wilson PD, Ferencz C. Maternal diabetes:an independent risk factor for major cardiovascular malformations with increased mortality of affected infants[J]. Teratology, 2001, 64(2):98-106.
[13]
Hoang TT, Marengo LK, Mitchell LE, et al. Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes[J]. Am J Epidemiol, 2017, 186(1):118-128.
[14]
Correa A, Gilboa SM, Besser LM, et al. Diabetes mellitus and birth defects[J]. Am J Obstet Gynecol, 2008, 199(3):237.e1-e9.
[15]
Leirgul E, Brodwall K, Greve G, et al. Maternal diabetes, birth weight, and neonatal risk of congenital heart defects in norway, 1994-2009[J]. Obstet Gynecol, 2016, 128(5):1116-1125.
[16]
Øyen N, Diaz LJ, Leirgul E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease:a nationwide cohort study[J]. Circulation, 2016, 133(23):2243-2253.
Sies H, Berndt C, Jones DP. Oxidative stress[J]. Annu Rev Biochem, 2017, 86:715-748.
[21]
Kayama Y, Raaz U, Jagger A, et al. Diabetic cardiovascular disease induced by oxidative stress[J]. Int J Mol Sci, 2015, 16(10):25234-25263.
[22]
Wang F, Fisher SA, Zhong J, et al. Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired wnt signaling[J]. Circ Cardiovasc Genet, 2015, 8(5):665-676.
[23]
Elrayess MA, Almuraikhy S, Kafienah W, et al. 4-hydroxynonenal causes impairment of human subcutaneous adipogenesis and induction of adipocyte insulin resistance[J]. Free Radic Biol Med, 2017, 104:129-137.
[24]
Busch CJ, Hendrikx T, Weismann D, et al. Malondialdehyde epitopes are sterile mediators of hepatic inflammation in hypercholesterolemic mice[J]. Hepatology, 2017, 65(4):1181-1195.
[25]
Kundu K, Knight SF, Lee S, et al. A significant improvement of the efficacy of radical oxidant probes by the kinetic isotope effect[J]. Angew Chem Int Ed Engl, 2010, 49(35):6134-6138.
[26]
Wu Y, Reece EA, Zhong J, et al. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis[J]. Am J Obstet Gynecol, 2016, 215(3):366.e1-366.e10.
[27]
Yamada K, Mito F, Matsuoka Y, et al. Fluorescence probes to detect lipid-derived radicals[J]. Nat Chem Biol, 2016, 12(8):608-613.
[28]
Wang F, Reece EA, Yang P. Oxidative stress is responsible for maternal diabetes-impaired transforming growth factor beta signaling in the developing mouse heart[J]. Am J Obstet Gynecol, 2015, 212(5):650.e1-e11.
[29]
Wang F, Wu Y, Quon MJ, et al. ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development[J]. Am J Physiol Endocrinol Metab, 2015, 309(5):E487-E499.
[30]
Moazzen H, Lu X, Ma NL, et al. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes[J]. Cardiovasc Diabetol, 2014, 13:46.
[31]
Bohuslavova R, Skvorova L, Sedmera D, et al. Increased susceptibility of HIF-1α heterozygous-null mice to cardiovascular malformations associated with maternal diabetes[J]. J Mol Cell Cardiol, 2013, 60:129-141.
[32]
Klimova T, Chandel NS. Mitochondrial complex Ⅲ regulates hypoxic activation of HIF[J]. Cell Death Differ, 2008, 15(4):660-666.
[33]
Brade T, Pane LS, Moretti A, et al. Embryonic heart progenitors and cardiogenesis[J]. Cold Spring Harb Perspect Med, 2013, 3(10):a013847.
[34]
Wren C, Birrell G, Hawthorne G. Cardiovascular malformations in infants of diabetic mothers[J]. Heart, 2003, 89(10):1217-1220.
[35]
Neeb Z, Lajiness JD, Bolanis E, et al. Cardiac outflow tract anomalies[J]. Wiley Interdiscip Rev Dev Biol, 2013, 2(4):499-530.
[36]
Morgan SC, Relaix F, Sandell LL, et al. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects[J]. Birth Defects Res A Clin Mol Teratol, 2008, 82(6):453-463.
[37]
Gessert S, Kuhl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development[J]. Circ Res, 2010, 107(2):186-199.
[38]
Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow tract septation in mice[J]. Pediatr Res, 2007, 61(4):386-391.
[39]
Fujio Y, Matsuda T, Oshima Y, et al. Signals through gp130 upregulate Wnt5a and contribute to cell adhesion in cardiac myocytes[J]. FEBS Lett, 2004, 573(1-3):202-206.
[40]
Dong D, Zhang Y, Reece EA, et al. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice[J]. Reprod Toxicol, 2016, 65:365-374.