糖皮质激素受体功能对注意缺陷多动障碍模型鼠行为的影响

卢洪珠, 章飞霞, 洪晓文, 王闽莹, 黄靓, 郑杰, 陈燕惠

中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (10) : 848-853.

PDF(1028 KB)
HTML
PDF(1028 KB)
HTML
中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (10) : 848-853. DOI: 10.7499/j.issn.1008-8830.2018.10.013
论著·实验研究

糖皮质激素受体功能对注意缺陷多动障碍模型鼠行为的影响

  • 卢洪珠, 章飞霞, 洪晓文, 王闽莹, 黄靓, 郑杰, 陈燕惠
作者信息 +

Effect of glucocorticoid receptor function on the behavior of rats with attention deficit hyperactivity disorder

  • LU Hong-Zhu, ZHANG Fei-Xia, HONG Xiao-Wen, WANG Min-Ying, HUANG Liang, ZHENG Jie, CHEN Yan-Hui
Author information +
文章历史 +

摘要

目的 通过比较自发性高血压大鼠(SHR)与Wistar Kyoto(WKY)大鼠及Sprague-Dawley(SD)大鼠行为学方面的差异,探讨注意缺陷多动障碍(ADHD)亚型理想的动物模型及糖皮质激素受体(GR)功能对ADHD大鼠的影响。方法 将生后21 d的24只SHR雄性大鼠随机分为GR激动剂组、GR抑制剂组和SHR组(n=8);另以生后21 d的WKY雄性大鼠、SD雄性大鼠各8只分别作为WKY组和SD组。GR激动剂组予以地塞米松(DEX)腹腔注射(每日0.5 mg/kg);GR抑制剂组予以米非司酮(RU486)腹腔注射(每日54 mg/kg);SHR组、WKY组和SD组则均予以生理盐水腹腔注射(每日0.5 mL/kg),连续用药14 d。根据开场实验和Lat迷宫评估各组大鼠自发活动程度和非选择性注意水平。结果 开场实验结果显示:药物干预前,SHR穿越格子数、直立次数较WKY大鼠及SD大鼠明显增多(P < 0.05);WKY大鼠穿越格子数显著多于SD大鼠(P < 0.05),但理毛次数SD大鼠显著多于WKY大鼠(P < 0.05)。药物干预后,GR激动剂组穿越格子数和理毛次数较SHR组明显减少(P < 0.05)。Lat迷宫结果显示:药物干预前,SHR穿越角落数和直立次数较WKY大鼠及SD大鼠明显增多(P < 0.05);WKY大鼠较SD大鼠直立次数和斜搭次数明显增多(P < 0.05)。药物干预后,GR激动剂组穿越角落数和直立次数较SHR组均显著减少(P < 0.05);GR抑制剂组直立次数较SHR组增加(P < 0.05);与SD组比较,WKY组大鼠直立次数及斜搭次数增多(P < 0.05)。结论 SHR是ADHD混合型亚型的理想动物模型,WKY大鼠能否作为ADHD注意力缺陷型亚型的动物模型仍有待于进一步研究;GR激动剂可有效改善SHR自发活动行为和非选择性注意水平。

Abstract

Objective To investigate the ideal animal models for attention deficit hyperactivity disorder (ADHD) subtypes and the effect of glucocorticoid receptor (GR) function on the behavior of ADHD rats by comparing behavioral differences between spontaneously hypertensive rats (SHRs), Wistar Kyoto (WKY) rats, and Sprague-Dawley (SD) rats. Methods A total of 24 male SHRs aged 21 days were randomly divided into GR agonist group, GR inhibitor group, and SHR group, with 8 rats in each group. Eight male WKY rats and 8 male SD rats, also aged 21 days, were enrolled as WKY group and SD group respectively. The GR agonist group was treated with intraperitoneal injection of dexamethasone (0.5 mg/kg daily); the GR inhibitor group was treated with intraperitoneal injection of mifepristone (RU486)(54 mg/kg daily); the SHR, WKY, and SD groups were treated with intraperitoneal injection of normal saline (0.5 mL/kg daily). The course of treatment was 14 days for all groups. The open field test and Lat maze test were used to evaluate spontaneous activity and non-selective attention. Results The open field test showed that before drug intervention the SHR group had significantly higher numbers of line crossings and rearings than the WKY and SD groups (P < 0.05); the WKY group had a significantly higher number of line crossings than the SD group (P < 0.05); the SD group had a significantly higher number of groomings than the WKY group (P < 0.05). After drug intervention, the GR agonist group had significantly lower numbers of line crossings and groomings than the SHR group (P < 0.05). The Lat maze test indicated that before drug intervention the SHR group had significantly higher numbers of corner crossings and rearings than the WKY and SD groups (P < 0.05); the WKY group had significantly higher numbers of rearings and leanings than the SD group (P < 0.05). After drug intervention, the GR agonist group had significantly lower numbers of corner crossings and rearings than the SHR group (P < 0.05); the GR inhibitor group had a significantly higher number of rearings than the SHR group (P < 0.05); the WKY group had significantly higher numbers of rearings and leanings than the SD group (P < 0.05). Conclusions SHR is an ideal animal model for mixed subtype ADHD, and further studies are needed to determine whether WKY rats can be used as an animal model for attention-deficit subtype ADHD. GR agonist can effectively improve spontaneous activity and non-selective attention in SHRs.

关键词

注意缺陷多动障碍 / 糖皮质激素受体 / 大鼠

Key words

Attention deficit hyperactivity disorder / Glucocorticoid receptor / Rats

引用本文

导出引用
卢洪珠, 章飞霞, 洪晓文, 王闽莹, 黄靓, 郑杰, 陈燕惠. 糖皮质激素受体功能对注意缺陷多动障碍模型鼠行为的影响[J]. 中国当代儿科杂志. 2018, 20(10): 848-853 https://doi.org/10.7499/j.issn.1008-8830.2018.10.013
LU Hong-Zhu, ZHANG Fei-Xia, HONG Xiao-Wen, WANG Min-Ying, HUANG Liang, ZHENG Jie, CHEN Yan-Hui. Effect of glucocorticoid receptor function on the behavior of rats with attention deficit hyperactivity disorder[J]. Chinese Journal of Contemporary Pediatrics. 2018, 20(10): 848-853 https://doi.org/10.7499/j.issn.1008-8830.2018.10.013

参考文献

[1] Willcutt EG. The prevalence of DSM-IV attentiondeficit/hyperactivity disorder:a meta-analytic review[J]. Neurotherapeutics, 2012, 9(3):490-499.
[2] Polanczyk GV, Salum GA, Sugaya LS, et al. Annual research review:a meta-analysis of the worldwide prevalence of mental disorders in children and adolescents[J]. J Child Psychol Psychiatry, 2015, 56(3):345-365.
[3] Isaksson J, Hogmark Å, Nilsson KW, et al. Effects of stimulants and atomoxetine on cortisol levels in children with ADHD[J]. Psychiatry Res, 2013, 209(3):740-741.
[4] 陈金兰, 陈辉, 王婷婷, 等. 注意缺陷多动障碍儿童唾液与血浆皮质醇水平变化及临床意义[J]. 福建医科大学学报, 2016, 50(6):403-406.
[5] Senft RA, Meddle SL, Baugh AT. Distribution and abundance of glucocorticoid and mineralocorticoid receptors throughout the brain of the great tit (parus major)[J]. PLoS One, 2016, 11(2):e0148516.
[6] 李春女. 小剂量地塞米松预处理的抗颞叶癫痫和脑保护作用[D]. 长春:吉林大学, 2013.
[7] 董瑞婕, 吴爱勤. 束缚应激大鼠海马糖皮质激素受体mRNA 的表达及米非司酮的干预作用[J]. 中国神经精神疾病杂志, 2009, 35(3):175-178.
[8] 池霞, 郭锡熔, 陈荣华, 等. 注意缺陷障碍动物模型的行为学特征检测[J]. 中国组织工程研究, 2006, 10(38):68-70.
[9] Rezaei G, Hosseini SA, Akbari Sari A, et al. Comparative efficacy of methylphenidate and atomoxetine in the treatment of attention deficit hyperactivity disorder in children and adolescents:a systematic review and meta-analysis[J]. Med J Islam Repub Iran, 2016, 30:325.
[10] Carvalho C, Vieira Crespo M, Ferreira Bastos L, et al. Contribution of animal models to contemporary understanding of Attention Deficit Hyperactivity Disorder[J]. ALTEX, 2016, 33(3):243-249.
[11] Somkuwar SS, Jordan CJ, Kantak KM, et al. Adolescent atomoxetine treatment in a rodent model of ADHD:effects on cocaine self-administration and dopamine transporters in frontostriatal regions[J]. Neuropsychopharmacology, 2013, 38(13):2588-2597.
[12] Fox MA, Panessiti MG, Hall FS, et al. An evaluation of the serotonin system and perseverative, compulsive, stereotypical, and hyperactive behaviors in dopamine transporter (DAT) knockout mice[J]. Psychopharmacology (Berl), 2013, 227(4):685-695.
[13] Miller EM, Pomerleau F, Huettl P, et al. The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens[J]. Neuropharmacology, 2012, 63(8):1327-1334.
[14] 郑小兰, 陈燕惠. 注意缺陷多动障碍的实验动物模型[J]. 中华行为医学与脑科学杂志, 2015, 24(3):276-279.
[15] Banegas I, Prieto I, Segarra AB, et al. Bilateral distribution of enkephalinase activity in the medial prefrontal cortex differs between WKY and SHR rats unilaterally lesioned with 6-hydroxydopamine[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 75:213-218.
[16] 周荣易, 王娇娇, 韩新民. SHR、WKY大鼠与SD大鼠注意缺陷多动障碍模型行为学特征的比较[J]. 中国实验动物学报, 2017, 25(4):380-385.
[17] 曹爱华, 张昕婷, 于琳, 等. SHR/WKY/SD大鼠的行为学特征研究[J]. 中国儿童保健杂志, 2013, 21(7):704-707.
[18] King LS, Colich NL, LeMoult J, et al. The impact of the severity of early life stress on diurnal cortisol:the role of puberty[J]. Psychoneuroendocrinology, 2017, 77:68-74.
[19] Isaksson J, Allen M, Nilsson KW, et al. Polymorphisms in the FK506 binding protein 5 gene are associated with attention deficit hyperactivity disorder and diurnal cortisol levels[J]. Acta Paediatr, 2015, 104(9):910-915.
[20] Ma L, Chen YH, Chen H, et al. The function of hypothalamuspituitary-adrenal axis in children with ADHD[J]. Brain Res, 2011, 1368:159-162.
[21] Isaksson J, Nilsson KW, Nyberg F, et al. Cortisol levels in children with attention-deficit/hyperactivity disorder[J]. J Psychiatr Res, 2012, 46(11):1398-1405.
[22] 黄靓. 糖皮质激素受体功能对ADHD大鼠中枢5-HT系统的影响[D]. 福州:福建医科大学, 2016.
[23] 郑小兰. 糖皮质激素受体功能对ADHD大鼠多巴胺能神经递质的影响[D]. 福州:福建医科大学, 2015.

基金

国家自然科学基金(81371262)。


PDF(1028 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/