孟鲁司特钠和细菌溶解产物对支气管哮喘豚鼠气道重塑及TGF-β1、Smad7表达的影响

廖嘉仪, 张涛

中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (12) : 1063-1069.

PDF(2331 KB)
HTML
PDF(2331 KB)
HTML
中国当代儿科杂志 ›› 2018, Vol. 20 ›› Issue (12) : 1063-1069. DOI: 10.7499/j.issn.1008-8830.2018.12.016
论著·实验研究

孟鲁司特钠和细菌溶解产物对支气管哮喘豚鼠气道重塑及TGF-β1、Smad7表达的影响

  • 廖嘉仪, 张涛
作者信息 +

Effects of montelukast sodium and bacterial lysates on airway remodeling and expression of transforming growth factor-β1 and Smad7 in guinea pigs with bronchial asthma

  • LIAO Jia-Yi, ZHANG Tao
Author information +
文章历史 +

摘要

目的 探讨白三烯受体拮抗剂孟鲁司特钠(MK)和(或)细菌溶解产物(OM-85BV)干预下,对支气管哮喘豚鼠气道重塑及转化生长因子-β1(TGF-β1)、Smad7水平变化的影响及其相关性。方法 将40只Hartley雄性豚鼠随机分成正常对照组、哮喘组、MK组、OM-85BV组和MK+OM-85BV组,每组8只。经腹腔内注射10%卵清蛋白(OVA)致敏并雾化吸入1% OVA激发以制备哮喘气道重塑模型,正常对照组以生理盐水替代;在雾化吸入激发阶段,MK组、OM-85BV组和MK+OM-85BV组给予相应的药物混悬液灌胃,正常对照组和哮喘组给予等量的生理盐水灌胃。激发阶段结束后24 h内,取豚鼠支气管肺泡灌洗液(BALF),用ELISA法测定BALF中TGF-β1、Smad7含量;并处死豚鼠,取肺组织病理切片观察气道重塑程度,采用图像分析技术测定肺内支气管基底膜周径(Pbm)、总管壁面积(Wat)及平滑肌面积(Wam)。采用Pearson直线相关对两变量间进行相关分析。结果 哮喘组、MK组、OM-85BV组和MK+OM-85BV组肺组织病理切片显示支气管平滑肌、肺泡壁均较正常对照组明显增厚,标准化的支气管总管壁面积(Wat/Pbm)及平滑肌面积(Wam/Pbm)均较正常对照组增大,TGF-β1水平均高于正常对照组,Smad7水平均低于正常对照组(均P < 0.05);MK组、OM-85BV组和MK+OM-85BV组肺组织病理切片显示病理损害程度较哮喘组有所改善,Wat/Pbm、Wam/Pbm均较哮喘组降低,TGF-β1水平均低于哮喘组,Smad7水平均高于哮喘组,且MK+OM-85BV组较MK组、OM-85BV组改善得更多(均P < 0.05)。TGF-β1与Smad7表达水平呈负相关;TGF-β1表达水平与Wat/Pbm及Wam/Pbm分别呈正相关;Smad7表达水平与Wat/Pbm及Wam/Pbm分别呈负相关(均P < 0.01)。结论 MK和(或)OM-85BV干预哮喘豚鼠后能减轻气道重塑,其中MK联合OM-85BV干预效果最好;其机制可能是降低TGF-β1和提高Smad7含量,从而改善TGF-β1和Smad7表达水平的失衡,最终减轻气道重塑。

Abstract

Objective To study the effect of montelukast sodium (MK), a leukotriene receptor antagonist, and bacterial lysates (OM-85BV), used alone or in combination, on airway remodeling and the expression of transforming growth factor-β1 (TGF-β1) and Smad7 in guinea pigs with bronchial asthma and their correlation.Methods A total of 40 male Hartley guinea pigs were randomly divided into normal control group, asthma group, MK group, OM-85BV group, and MK+OM-85BV group, with 8 guinea pigs in each group. Intraperitoneal injection of 10% ovalbumin (OVA) for sensitization and aerosol inhalation of 1% OVA for challenge were performed to establish a model of airway remodeling of asthma in all of the groups apart from the normal control group, which were treated with normal saline. In the stage of challenge by aerosol inhalation, the guinea pigs in the MK, OM-85BV, and MK+OM-85BV groups were given corresponding suspension by gavage, and those in the normal control and asthma groups were given an equal volume of normal saline by gavage. Bronchoalveolar lavage fluid (BALF) of the guinea pigs was collected within 24 hours after challenge, and ELISA was used to measure the levels of TGF-β1 and Smad7 in BALF. The guinea pigs were sacrificed and the pathological section of lung tissue was prepared to observe the degree of airway remodeling. An image analysis technique was used to measure perimeter of the basement membrane (Pbm), total bronchial wall area (Wat), and airway bronchial smooth muscle area (Wam). Pearson linear regression was used to investigate the correlation between two variables.Results According to the lung pathological section, compared with the normal control group, the asthma, MK, OM-85BV, and MK+OM-85BV groups had significant thickening of bronchial smooth muscle and alveolar wall, significantly higher Wat/Pbm and Wam/Pbm, a significantly higher level of TGF-β1, and a significantly lower level of Smad7 (P < 0.05). Compared with the asthma group, the MK, OM-85BV, and MK+OM-85BV groups had a significant improvement in pathological injury, significantly lower Wat/Pbm and Wam/Pbm, a significantly lower level of TGF-β1, and a significantly higher level of Smad7 (P < 0.05). The MK+OM-85BV group had significantly greater improvements than the MK group and the OM-85BV group (P < 0.05). The expression of TGF-β1 was negatively correlated with that of Smad7 and positively correlated with Wat/Pbm and Wam/Pbm, and the expression of Smad7 was negatively correlated with Wat/Pbm and Wam/Pbm (P < 0.01).Conclusions MK and OM-85BV, used alone or in combination, can reduce airway remodeling in guinea pigs with asthma, and MK combined with OM-85BV has the best effect, possibly by reducing TGF-β1 expression, increasing Smad7 expression, and improving the TGF-β1/Smad7 imbalance.

关键词

支气管哮喘 / 气道重塑 / 孟鲁司特钠 / 细菌溶解产物 / 转化生长因子-β1 / Smad7 / 豚鼠

Key words

Bronchial asthma / Airway remodeling / Montelukast sodium / Bacterial lysates / Transforming growth factor-β1 / Smad7 / Guinea pigs

引用本文

导出引用
廖嘉仪, 张涛. 孟鲁司特钠和细菌溶解产物对支气管哮喘豚鼠气道重塑及TGF-β1、Smad7表达的影响[J]. 中国当代儿科杂志. 2018, 20(12): 1063-1069 https://doi.org/10.7499/j.issn.1008-8830.2018.12.016
LIAO Jia-Yi, ZHANG Tao. Effects of montelukast sodium and bacterial lysates on airway remodeling and expression of transforming growth factor-β1 and Smad7 in guinea pigs with bronchial asthma[J]. Chinese Journal of Contemporary Pediatrics. 2018, 20(12): 1063-1069 https://doi.org/10.7499/j.issn.1008-8830.2018.12.016

参考文献

[1] Trevor JL, Chipps BE. Severe asthma in primary care:identification and management[J]. Am J Med, 2018, 131(5):484-491.
[2] 中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[J]. 中华儿科杂志, 2016, 54(3):167-181.
[3] The GINA Board of Directors, The GINA Science Committee. 2018 GINA report, global strategy for asthma management and prevention[EB/OL]. (2018-03-06). http://ginasthma.org/2018-gina-report-global-strategy-for-asthma-management-and-prevention.
[4] Matsumoto H. Serum periostin:a novel biomarker for asthma management[J]. Allergol Int, 2014, 63(2):153-160.
[5] Carlstrom L, Castro M. Severe asthma:what makes it so hard to manage?[J]. Curr Allergy Asthma Rep, 2009, 9(5):393-400.
[6] 刘静, 周小建, 洪建国. 细菌溶解产物对支气管哮喘小鼠TGF-β1及Foxp3表达的影响[J]. 国际呼吸杂志, 2014, 34(19):1441-1446.
[7] 贺孝良, 李昌崇, 张维溪, 等. TGF-β1和Smad6在哮喘大鼠气道重塑中的表达及福莫特罗的影响[J]. 浙江医学, 2010, 32(3):323-326.
[8] Lee HY, Kim IK, Yoon HK, et al. Inhibitory effects of resveratrol on airway remodeling by transforming growth factor-β/Smad signaling pathway in chronic asthma model[J]. Allergy Asthma Immunol Res, 2017, 9(1):25-34.
[9] Groneberg DA, Witt H, Adcock IM, et al. Smads as intracellular mediators of airway inflammation[J]. Exp Lung Res, 2004, 30(3):223-250.
[10] Nakao A, Sagara H, Setoguchi Y, et al. Expression of Smad7 in bronchial epithelial cells is inversely correlated to basement membrane thickness and airway hyperresponsiveness in patients with asthma[J]. J Allergy Clin Immuno, 2002, 110(6):873-878.
[11] 李丽, 娄春艳, 李敏, 等. 孟鲁司特钠对哮喘小鼠气道重塑及Th17/CD4+CD25+ Treg表达的影响[J]. 中国当代儿科杂志, 2016, 18(11):1174-1180.
[12] 中华医学会儿科学分会呼吸学组. 白三烯受体拮抗剂在儿童常见呼吸系统疾病中的临床应用专家共识[J]. 中华实用儿科临床杂志, 2016, 31(13):973-977.
[13] 王晓川, 申昆玲. 反复呼吸道感染临床诊治路径[J]. 中国实用儿科杂志, 2016, 31(10):721-725.
[14] Ohki Y, Tokuyama K, Sato A, et al. Maturational changes in airway remodeling after chronic exposure to ovalbumin in sensitized guinea pigs:role of cell renewal of airway resident cells[J]. Pediatr Res, 2002, 52(4):525-532.
[15] 白建文, 邓伟吾, 吴华成. 孟鲁司特对气道重塑及白细胞介素类与转移生长因子β2 mRNA表达的影响[J]. 中华结核和呼吸杂志, 2004, 27(8):524-528.
[16] Bessler WG, Vor dem Esche U, Masihi N. The bacterial extract OM-85BV protects mice against influenza and Salmonella infection[J]. Int Immunopharmacol, 2010, 10(9):1086-1090.
[17] 娄春艳, 李敏, 李丽. 哮喘小鼠气道重塑过程中CD4+CD25+调节性T细胞和Th17细胞表达的动态变化[J]. 中国当代儿科杂志, 2015, 17(9):994-1000.
[18] Cho JY. Recent advances in mechanisms and treatments of airway remodeling in asthma:a message from the bench side to the clinic[J]. Korean J Intern Med, 2011, 26(4):367-383.
[19] 李涛, 黄茂. 转化生长因子β在支气管哮喘气道平滑肌重塑中的作用[J]. 中华哮喘杂志(电子版), 2010, 4(1):60-63.
[20] Thompson-Souza GA, Gropillo I, Neves JS. Cysteinyl leukotrienes in eosinophil biology:functional roles and therapeutic perspectives in eosinophilic disorders[J]. Front Med (Lausanne), 2017, 4:106.
[21] Hosoki K, Kainuma K, Toda M, et al. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils[J]. Biochem Biophys Res Commun, 2014, 449(3):351-356.
[22] Shin IS, Jeon WY, Shin HK, et al. Effects of montelukast on subepithelial/peribronchial fibrosis in a murine model of ovalbumin induced chronic asthma[J]. Int Immunopharmacol, 2013, 17(3):867-873.
[23] Han RF, Li HY, Wang JW, et al. Study on clinical effect and immunologic mechanism of infants capillary bronchitis secondary bronchial asthma treated with bacterial lysates Broncho-Vaxom[J]. Eur Rev Med Pharmacol Sci, 2016, 20(10):2151-2155.
[24] Fu R, Li J, Zhong H, et al. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency[J]. PLoS One, 2014, 9(3):e92912.
[25] Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma[J]. Ann Allergy Asthma Immunol, 2015, 114(5):364-369.
[26] Alyanakian MA, Grela F, Aumeunier A, et al. Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes[J]. Diabetes, 2006, 55(1):179-185.
[27] Polla BS, Baladi S, Fuller K, et al. Presence of hsp65 in bacterial extracts (OM-89):a possible mediator of orally-induced tolerance?[J]. Experientia, 1995, 51(8):775-779.
[28] Bowman LM, Holt PG. Selective enhancement of systemic Th1 immunity in immunologically immature rats with an orally administered bacterial extract[J]. Infect Immun, 2001, 69(6):3719-3727.

基金

广东省医学科学技术研究基金项目(A2017331)。


PDF(2331 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/