先天性甲状腺功能减退症患儿GNAS和THRA基因突变分析

陈晓宇, 刘勇, 刘建华, 秦晓松

中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (7) : 680-684.

PDF(1269 KB)
HTML
PDF(1269 KB)
HTML
中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (7) : 680-684. DOI: 10.7499/j.issn.1008-8830.2019.07.012
论著·临床研究

先天性甲状腺功能减退症患儿GNAS和THRA基因突变分析

  • 陈晓宇, 刘勇, 刘建华, 秦晓松
作者信息 +

An analysis of GNAS and THRA gene mutations in children with congenital hypothyroidism

  • CHEN Xiao-Yu, LIU Yong, LIU Jian-Hua, QIN Xiao-Song
Author information +
文章历史 +

摘要

目的 对70例先天性甲状腺功能减退症(CH)患儿的刺激性G蛋白α亚基(GNAS)基因和甲状腺素受体α(THRA)基因进行二代测序分析,并初步探讨GNAS和THRA基因突变型与CH患儿的临床表现型之间的关系。方法 选取70例通过新生儿筛查确诊为CH的患儿,采集外周血并进行DNA样本提取,利用二代测序技术对GNAS和THRA基因进行突变筛查,利用生物信息学软件分析基因突变的致病性。结果 70例CH患儿中,3例患儿(4%)检出9种GNAS基因的错义突变(包括3种已知基因突变和6种新突变),4例患儿检出同1种THRA基因多态c.508A > G(p.I170V)。经过生物信息学软件预测和ACMG/AMP指南分析发现2种GNAS基因突变[c.301C > T(p.R101C)、c.334G > A(p.E112K)]致病的可能性大。3例携带GNAS基因突变的患儿存在不同程度的甲状腺功能低下表现。结论 GNAS基因突变与CH的发病有关,患儿的临床表现存在较大的异质性;THRA基因突变可能与CH的发病无相关性。

Abstract

Objective To preliminarily investigate the relationship between stimulatory G protein α subunit (GNAS) and thyroid hormone receptor α (THRA) gene mutations and clinical phenotypes in children with congenital hypothyroidism (CH). Methods A total of 70 children with CH diagnosed by neonatal screening were enrolled. Their peripheral blood samples were collected to extract genomic DNA. GNAS and THRA genes were screened for mutations using next-generation sequencing. Bioinformatics software was used to analyze the pathogenicity of gene mutations. Results Of the 70 children with CH, nine missense mutations (three known mutations and six novel mutations) in the GNAS gene were detected in three patients (4%), and one gene polymorphism, c.508A > G(p.I170V), in the THRA gene was detected in four patients. The analysis results of bioinformatics software and ACMG/AMP guidelines showed that the two GNAS gene mutations[c.301C > T(p.R101C) and c.334G > A(p.E112K)] were more likely to be pathogenic. Three children with GNAS gene mutations showed different degrees of hypothyroidism. Conclusions GNAS gene mutations are related to the development of CH, and children with CH have different clinical manifestations. THRA gene mutations may not be associated with CH.

关键词

先天性甲状腺功能减退症 / 二代测序 / 基因突变 / 儿童

Key words

Congenital hypothyroidism / Next-generation sequencing / Gene mutation / Child

引用本文

导出引用
陈晓宇, 刘勇, 刘建华, 秦晓松. 先天性甲状腺功能减退症患儿GNAS和THRA基因突变分析[J]. 中国当代儿科杂志. 2019, 21(7): 680-684 https://doi.org/10.7499/j.issn.1008-8830.2019.07.012
CHEN Xiao-Yu, LIU Yong, LIU Jian-Hua, QIN Xiao-Song. An analysis of GNAS and THRA gene mutations in children with congenital hypothyroidism[J]. Chinese Journal of Contemporary Pediatrics. 2019, 21(7): 680-684 https://doi.org/10.7499/j.issn.1008-8830.2019.07.012

参考文献

[1] Heidari Z, Feizi A, Hashemipour M, et al. Growth development in children with congenital hypothyroidism:the effect of screening and treatment variables -a comprehensive longitudinal study[J]. Endocrine, 2016, 54(2):448-459.
[2] Liu S, Wang X, Zou H, et al. Identification and characterization of novel PAX8 mutations in Congenital Hypothyroidism (CH) in a Chinese population[J]. Oncotarget, 2017, 8(5):8707-8716.
[3] Wang F, Liu C, Jia X, et al. Next-generation sequencing of NKX2.1, FOXE1, PAX8, NKX2.5, and TSHR in 100 Chinese patients with congenital hypothyroidism and athyreosis[J]. Clin Chim Acta, 2017, 470:36-41.
[4] Fu C, Luo S, Zhang S, et al. Next-generation sequencing analysis of DUOX2 in 192 Chinese subclinical congenital hypothyroidism (SCH) and CH patients[J]. Clin Chim Acta, 2016, 458:30-34.
[5] van Tijn DA, de Vijlder JJ, Verbeeten B Jr, et al. Neonatal detection of congenital hypothyroidism of central origin[J]. J Clin Endocrinol Metab, 2005, 90(6):3350-3359.
[6] Sun F, Zhang JX, Yang CY, et al. The genetic characteristics of congenital hypothyroidism in China by comprehensive screening of 21 candidate genes[J]. Eur J Endocrinol, 2018, 178(6):623-633.
[7] Castanet M, Polak M, Bonaïti-Pellié C, et al. Nineteen years of national screening for congenital hypothyroidism:familial cases with thyroid dysgenesis suggest the involvement of genetic factors[J]. J Clin Endocrinol Metab, 2001, 86(5):2009-2014.
[8] Yu B, Long W, Yang Y, et al. Newborn screening and molecular profile of congenital hypothyroidism in a Chinese population[J]. Front Genet, 2018, 9:509-515.
[9] Long W, Lu G, Zhou W, et al. Targeted next-generation sequencing of thirteen causative genes in Chinese patients with congenital hypothyroidism[J]. Endocr J, 2018, 65(10):1019-1028.
[10] Sano S, Nakamura A, Matsubara K, et al. (Epi)genotype-phenotype analysis in 69 Japanese patients with pseudohypoparathyroidism type I[J]. J Endocr Soc, 2017, 2(1):9-23.
[11] Aldred MA, Trembath RC. Activating and inactivating mutations in the human GNAS1 gene[J]. Hum Mutat, 2000, 16(3):183-189.
[12] Lacka K, Maciejewski A. Rare thyroid non-neoplastic diseases[J]. Thyroid Res, 2015, 8:5.
[13] Romanet P, Osei L, Netchine I, et al. Case report of GNAS epigenetic defect revealed by a congenital hypothyroidism[J]. Pediatrics, 2015, 135(4):e1079-e1083.


PDF(1269 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/