儿童铁粒幼红细胞贫血的临床特征及基因突变谱分析

安文彬, 刘超, 万扬, 郭晔, 王书春, 张英驰, 竺晓凡

中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (10) : 1016-1021.

PDF(1496 KB)
HTML
PDF(1496 KB)
HTML
中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (10) : 1016-1021. DOI: 10.7499/j.issn.1008-8830.2019.10.012
论著·临床研究

儿童铁粒幼红细胞贫血的临床特征及基因突变谱分析

  • 安文彬1,2, 刘超1,2, 万扬1,2, 郭晔1, 王书春1, 张英驰2, 竺晓凡1,2
作者信息 +

Clinical features and gene mutation spectrum in children with sideroblastic anemia

  • AN Wen-Bin1,2, LIU Chao1,2, WAN Yang1,2, GUO Ye1, WANG Shu-Chun1, ZHANG Ying-Chi2, ZHU Xiao-Fan1,2
Author information +
文章历史 +

摘要

目的 对铁粒幼红细胞贫血(SA)患儿的临床特征和基因突变谱进行分析,探讨目的基因捕获二代测序技术在SA患儿分子诊断中的临床应用价值,提高对SA的早期诊断和临床干预水平。方法 收集36例诊断为SA患儿的临床资料,采用目的基因捕获二代测序方法进行SA相关致病基因、与血红素合成及线粒体铁代谢有关的基因检测,分析基因型与临床表型的关系。结果 36例患儿中,32例为遗传性铁粒幼红细胞贫血(CSA),4例为骨髓增生异常综合征伴环形铁粒幼红细胞(MDS-RS)。共53%(19/36)患儿检测到CSA相关基因突变,其中ALAS2基因突变占47%(9/19),SLC25A38基因突变占21%(4/19),线粒体片段缺失占32%(6/19)。所有MDS-RS患儿均未检测到致病/可能致病性基因突变。89%(17/19)为已知致病突变,11%(2/19)为新变异。ALAS2基因新变异c.1153A > T (p.I385F)评级为"可能致病的"及SLC25A38基因新变异c.175C > T (p.Q59X)评级为"致病的"。结论 儿童CSA以ALAS2及SLC25A38基因突变为主,但线粒体基因片段缺失亦占有相当比例,对于婴儿期即出现的低增生性贫血,需考虑线粒体病的可能。

Abstract

Objective To study the clinical features and gene mutation spectrum of children with sideroblastic anemia (SA) and the clinical value of targeted next-generation sequencing in the molecular diagnosis of children with SA. Methods Clinical data were collected from 36 children with SA. Targeted next-generation sequencing was used to detect mutations in SA-related pathogenic genes and genes associated with heme synthesis and mitochondrial iron metabolism. The association between genotype and clinical phenotype was analyzed. Results Of the 36 patients, 32 had congenital sideroblastic anemia (CSA) and 4 had myelodysplastic syndrome with ring sideroblasts (MDS-RS). Mutations in CSA-related genes were detected in 19 children (19/36, 53%), among whom 9 (47%) had ALAS2 mutation, 4 (21%) had SLC25A38 mutation, and 6 (32%) had mitochondrial fragment deletion. No pathogenic gene mutation was detected in 4 children with MDS-RS. Among the 19 mutations, 89% (17/19) were known mutations and 11% (2/19) were novel mutations. The novel mutation of the ALAS2 gene c.1153A >T(p.I385F) was rated as "possibly pathogenic" and the novel mutation of the SLC25A38 gene c.175C > T(p.Q59X) was rated as "pathogenic". Conclusions ALAS2 and SLC25A38 gene mutations are commonly seen in children with CSA, but mitochondrial gene fragment deletion also accounts for a relatively high proportion. For children with hypoplastic anemia occurring in infancy, mitochondrial disease should be considered.

关键词

遗传性铁粒幼红细胞贫血 / 骨髓增生异常综合征伴环形铁粒幼红细胞 / 临床特征 / 基因突变 / 目的基因捕获二代测序 / 儿童

Key words

Congenital sideroblastic anemia / Myelodysplastic syndrome with ring sideroblasts / Clinical feature / Gene mutation / Targeted next-generation sequencing / Child

引用本文

导出引用
安文彬, 刘超, 万扬, 郭晔, 王书春, 张英驰, 竺晓凡. 儿童铁粒幼红细胞贫血的临床特征及基因突变谱分析[J]. 中国当代儿科杂志. 2019, 21(10): 1016-1021 https://doi.org/10.7499/j.issn.1008-8830.2019.10.012
AN Wen-Bin, LIU Chao, WAN Yang, GUO Ye, WANG Shu-Chun, ZHANG Ying-Chi, ZHU Xiao-Fan. Clinical features and gene mutation spectrum in children with sideroblastic anemia[J]. Chinese Journal of Contemporary Pediatrics. 2019, 21(10): 1016-1021 https://doi.org/10.7499/j.issn.1008-8830.2019.10.012

参考文献

[1] 龙章彪,杜亚丽,韩冰.遗传性铁粒幼细胞贫血相关基因及机制研究进展[J].中华血液学杂志, 2016, 37(12):1090-1093.
[2] Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia[J]. Blood, 2019, 133(1):59-69.
[3] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
[4] Ohba R, Furuyama K, Yoshida K, et al. Clinical and genetic characteristics of congenital sideroblastic anemia:comparison with myelodysplastic syndrome with ring sideroblast (MDS-RS)[J]. Ann Hematol, 2013, 92(1):1-9.
[5] Liu G, Guo S, Kang H, et al. Mutation spectrum in Chinese patients affected by congenital sideroblastic anemia and a search for a genotype-phenotype relationship[J]. Haematologica, 2013, 98(12):e158-e160.
[6] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424.
[7] Furuyama K, Uno R, Urabe A, et al. R411C mutation of the ALAS2 gene encodes a pyridoxine-responsive enzyme with low activity[J]. Br J Haematol, 1998, 103(3):839-841.
[8] Cotter PD, Rucknagel DL, Bishop DF. X-linked sideroblastic anemia:identification of the mutation in the erythroid-specific δ-aminolevulinate synthase gene (ALAS2) in the original family described by Cooley[J]. Blood, 1994, 84(11):3915-3924.
[9] An W, Zhang J, Chang L, et al. Mutation analysis of Chinese sporadic congenital sideroblastic anemia by targeted capture sequencing[J]. J Hematol Oncol, 2015, 8:55.
[10] Kaneko K, Furuyama K, Fujiwara T, et al. Identification of a novel erythroid-specific enhancer for the ALAS2 gene and its loss-of-function mutation which is associated with congenital sideroblastic anemia[J]. Haematologica, 2014, 99(2):252-261.
[11] Méndez M, Moreno-Carralero MI, Morado-Arias M, et al. Sideroblastic anemia:functional study of two novel missense mutations in ALAS2[J]. Mol Genet Genomic Med, 2016, 4(3):273-282.
[12] Fleming MD. The genetics of inherited sideroblastic anemias[J]. Semin Hematol, 2002, 39(4):270-281.
[13] Shoolingin-Jordan PM, Al-Daihan S, Alexeev D, et al. 5-Aminolevulinic acid synthase:mechanism, mutations and medicine[J]. Biochim Biophys Acta, 2003, 1647(1-2):361-366.
[14] Aivado M, Gattermann N, Rong A, et al. X-linked sideroblastic anemia associated with a novel ALAS2 mutation and unfortunate skewed X-chromosome inactivation patterns[J]. Blood Cells Mol Dis, 2006, 37(1):40-45.
[15] Aivado M, Gattermann N, Bottomley S. X chromosome inactivation ratios in female carriers of X-linked sideroblastic anemia[J]. Blood, 2001, 97(12):4000-4002.
[16] LeBlanc MA, Bettle A, Berman JN, et al. Study of glycine and folic acid supplementation to ameliorate transfusion dependence in congenital SLC25A38 mutated sideroblastic anemia[J]. Pediatr Blood Cancer, 2016, 63(7):1307-1309.
[17] Kim MH, Shah S, Bottomley SS, et al. Reduced-toxicity allogeneic hematopoietic stem cell transplantation in congenital sideroblastic anemia[J]. Clin Case Rep, 2018, 6(9):1841-1844.
[18] Huang K, Zhou DH, Li Y, et al. Modified conditioning regimen improves outcomes of unrelated donor peripheral blood stem cell transplantation for β-thalassaemia major patients[J]. Pediatr Blood Cancer, 2018, 65(7):e27026.
[19] Farruggia P, Di Marco F, Dufour C. Pearson syndrome[J]. Expert Rev Hematol, 2018, 11(3):239-246.
[20] Gagne KE, Ghazvinian R, Yuan D, et al. Pearson marrow pancreas syndrome in patients suspected to have DiamondBlackfan anemia[J]. Blood, 2014, 124(3):437-440.
[21] Hoyoux C, Dresse MF, Robinet S, et al. Cord blood transplantation in a child with Pearson's disease[J]. Pediatr Blood Cancer, 2008, 51(4):566.
[22] Pfeffer G, Horvath R, Klopstock T, et al. New treatments for mitochondrial disease-no time to drop our standards[J]. Nat Rev Neurol, 2013, 9(8):474-481.

基金

国家自然科学基金(81700109);协和青年科研基金?&?中央高校基本科研业务费专项资金(2017320024);国家重点研发计划(2016YFC0901503);爱佑慈善基金。


PDF(1496 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/