
肾功能亢进在危重症患儿中的研究进展
Research advances in augmented renal clearance in critically ill children
近年来,医学危重症领域提出了"肾功能亢进"(ARC)的概念,将其定义为肾脏对药物的清除能力增强,当肌酐清除率 > 130 mL/(min·1.73 m2)时,即认为患者存在ARC。越来越多的证据表明,ARC不仅存在于成人危重症患者,在危重症患儿中也普遍存在。危重症患儿可能因ARC造成的药物浓度不足导致治疗失败,但由于缺乏可靠的工具来评估危重症患儿的肾脏功能,ARC往往被忽视。因此,该文通过复习危重症患儿ARC的相关文献,对其概念、发生机制、影响因素、识别工具,以及对抗菌药物药代动力学/药效学及患儿临床结局的影响进行综述,旨在为临床用药提供参考。
In recent years, the concept of "augmented renal clearance" (ARC) has been proposed in the field of critical illness and is defined as enhanced renal clearance of drugs. ARC is considered when the creatinine clearance rate exceeds 130 mL/(min·1.73 m2). An increasing number of evidence has shown that ARC is commonly seen in critically ill adults and children. In critically ill children, low drug concentration due to ARC may lead to treatment failure. Unfortunately, ARC is often neglected due to the lack of reliable tools to assess renal function in critically ill children. Therefore, with reference to the articles on ARC in critically ill children, this article reviews the concept of ARC, the pathogenesis of ARC, the influencing factors for ARC, the identification tools for ARC, and the influence of ARC on pharmacokinetics/pharmacodynamics of antibacterial agents and clinical outcome, in order to provide a reference for clinical medication.
Augmented renal clearance / Pharmacokinetics/pharmacodynamics / Critical illness / Child
[1] Benmaek F, Behforouz N, Benoist JF, et al. Renal effects of lowdose dopamine during vasopressor therapy for posttraumatic intracranial hypertension[J]. Intensive Care Med, 1999, 25(4):399-405.
[2] Sime FB, Udy AA, Roberts JA. Augmented renal clearance in critically ill patients:etiology, definition and implications for beta-lactam dose optimization[J]. Curr Opin Pharmacol, 2015, 24:1-6.
[3] Bilbao-Meseguer I, Rodríguez-Gascón A, Barrasa H, et al. Augmented renal clearance in critically ill patients:a systematic review[J]. Clin Pharmacokinet, 2018, 57(9):1107-1121.
[4] Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients[J]. Nat Rev Nephrol, 2011, 7(9):539-543.
[5] Hirai K, Ihara S, Kinae A, et al. Augmented renal clearance in pediatric patients with febrile neutropenia associated with vancomycin clearance[J]. Ther Drug Monit, 2016, 38(3):393-397.
[6] Avedissian SN, Bradley E, Zhang D, et al. Augmented renal clearance using population-based pharmacokinetic modeling in critically ill pediatric patients[J]. Pediatr Crit Care Med, 2017, 18(9):e388-e394.
[7] Lee B, Kim J, Park JD, et al. Predicting augmented renal clearance using estimated glomerular filtration rate in criticallyill children[J]. Clin Nephrol, 2017, 88(9):148-155.
[8] 尚振华,颜灏,贾春松,等.肾脏功能储备研究进展[J].山东医药, 2018, 58(5):103-105.
[9] Sara S, Federico N, Mario M, et al. Intra-parenchymal renal resistive index variation (IRRIV) describes renal functional reserve (RFR):pilot study in healthy volunteers[J]. Front Physiol, 2016, 7(55):286.
[10] Sharma A, Mucino MJ, Ronco C. Renal functional reserve and renal recovery after acute kidney injury[J]. Nephron Clin Pract, 2014, 127(1-4):94-100.
[11] Hobbs AL, Shea KM, Roberts KM, et al. Implications of augmented renal clearance on drug dosing in critically ill patients:a focus on antibiotics[J]. Pharmacotherapy, 2015, 35(11):1063-1075.
[12] De Cock PA, Standing JF, Barker CI, et al. Augmented renal clearance implies a need for increased amoxicillin/clavulanic acid dosing in critically ill children[J]. Antimicrob Agents Chemother, 2015, 59(11):7027-7035.
[13] 王宝宝,武元,秦岩,等.碘海醇清除率在慢性肾脏病儿童肾功能评价方面的应用[J].中国医学科学院学报, 2015, 37(2):171-178.
[14] Fuster-Lluch O, Gerónimo-Pardo M, Peyró-García R, et al. Glomerular hyperfiltration and albuminuria in critically ill patients[J]. Anaesth Intensive Care, 2008, 36(5):674-680.
[15] Delanaye P, Cavalier E, Pottel H. Serum creatinine:not so simple![J]. Nephron, 2017, 136(4):302-308.
[16] Macedo E, Josée Bouchard, Soroko SH, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients[J]. Crit Care, 2010, 14(3):R82.
[17] Udy AA, Morton FJ, Nguyenpham S, et al. A comparison of CKD-EPI estimated glomerular filtration rate and measured creatinine clearance in recently admitted critically ill patients with normal plasma creatinine concentrations[J]. BMC Nephrol, 2013, 14:250.
[18] Barletta JF, Mangram AJ, Byrne M, et al. The importance of empiric antibiotic dosing in critically ill trauma patients:are we under-dosing based on augmented renal clearance and inaccurate renal clearance estimates?[J]. J Trauma Acute Care Surg, 2016, 81(6):1115-1121.
[19] Ruiz S, Minville V, Asehnoune K, et al. Screening of patients with augmented renal clearance in ICU:taking into account the CKD-EPI equation, the age, and the cause of admission[J]. Ann Intensive Care, 2015, 5(1):49.
[20] 张敏.肾功能的评估方法及进展[J].解放军医学院学报, 2012, 33(6):690-692.
[21] Steinke T, Moritz S, Beck S, et al. Estimation of creatinine clearance using plasma creatinine or cystatin C:a secondary analysis of two pharmacokinetic studies in surgical ICU patients[J]. BMC Anesthesiol, 2015, 15:62.
[22] Adnan S, Ratnam S, Kumar S, et al. Select critically ill patients at risk of augmented renal clearance:experience in a Malaysian intensive care unit[J]. Anaesth Intensive Care, 2014, 42(6):715-722.
[23] Udy AA, Jarrett P, Stuart J, et al. Determining the mechanisms underlying augmented renal drug clearance in the critically ill:use of exogenous marker compounds[J]. Crit Care, 2014, 18(6):657.
[24] Barletta JF, Mangram AJ, Byrne M, et al. The importance of empiric antibiotic dosing in critically ill trauma patients[J]. J Trauma Acute Care Surg, 2016, 81(6):1115-1121.
[25] Martin JH, Fay MF, Udy AA, et al. Pitfalls of using estimations of glomerular filtration rate in an intensive care population[J]. Intern Med J, 2011, 41(7):537-543.
[26] Akers KS, Niece KL, Chung KK, et al. Modified Augmented Renal Clearance score predicts rapid piperacillin and tazobactam clearance in critically ill surgery and trauma patients[J]. J Trauma Acute Care Surg, 2014, 77(3 Suppl 2):S163-S170.
[27] 中国医药教育协会感染疾病专业委员会.抗菌药物药代动力学/药效学理论临床应用专家共识[J].中华结核和呼吸杂志, 2018, 41(6):409-446.
[28] Minkut? R, Briedis V, Steponavi?iūt? R, et al. Augmented renal clearance-an evolving risk factor to consider during the treatment with vancomycin[J]. J Clin Pharm Ther, 2013, 38(6):462-467.
[29] Hirai K, Ishii H, Shimoshikiryo T, et al. Augmented renal clearance in patients with febrile neutropenia is associated with increased risk for subtherapeutic concentrations of vancomycin[J]. Ther Drug Monit, 2016, 38(6):706-710.
[30] Nelson NR, Morbitzer KA, Dedrick JJ, et al. The impact of capping creatinine clearance on achieving therapeutic vancomycin concentrations in neurocritically ill patients with traumatic brain injury[J]. Neurocrit Care, 2019, 30(1):126-131.
[31] Delattre IK, Taccone FS, Jacobs F, et al. Optimizing β-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets:are first conventional doses effective?[J]. Expert Rev Anti Infect Ther, 2017, 15(7):677-688.
[32] Béranger A, Benaboud S, Urien S, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically ill children with normal and augmented renal clearance[J]. Clin Pharmacokinet, 2018, 58(2):223-233.
[33] Nichols K, Chung EK, Knoderer CA, et al. Population pharmacokinetics and pharmacodynamics of extendedinfusion piperacillin and tazobactam in critically ill children[J]. Antimicrob Agents Chemother, 2015, 60(1):522-531.
[34] Cies JJ, Shankar V, Schlichting C, et al. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children[J]. Pediatr Infect Dis J, 2013, 33(2):168-173.
[35] Yu T, Stockmann C, Healy DP, et al. Determination of optimal amikacin dosing regimens for pediatric patients with burn wound sepsis[J]. J Burn Care Res, 2015, 36(4):e244-e252.
[36] Dhont E, Van Der Heggen T, De Jaeger A, et al. Augmented renal clearance in pediatric intensive care:are we undertreating our sickest patients?[J]. Pediatr Nephrol, 2018. doi:10.1007/s00467-018-4120-2.[Epub ahead of print]
[37] Cies JJ, Moore WS, Enache A, et al. β-lactam therapeutic drug management in the PICU[J]. Crit Care Med, 2017, 46(2):272-279.