
钙敏感受体对持续肺动脉高压新生小鼠Ⅱ型11β-羟基类固醇脱氢酶及皮质醇的影响
陈志文, 李翔, 吴冰霞, 马克涛, 谷强
中国当代儿科杂志 ›› 2019, Vol. 21 ›› Issue (11) : 1124-1130.
钙敏感受体对持续肺动脉高压新生小鼠Ⅱ型11β-羟基类固醇脱氢酶及皮质醇的影响
Effects of calcium-sensitive receptors on 11β-hydroxysteroid dehydrogenase type 2 and cortisol in neonatal mice with persistent pulmonary hypertension
目的 研究钙敏感受体(CaSR)在持续肺动脉高压(PPH)新生小鼠模型中对Ⅱ型11β-羟基类固醇脱氢酶(11β-HSD2)表达及皮质醇浓度的影响。方法 56只新生C57BL/6小鼠随机分为对照组、PPH组、激动剂组及抑制剂组(n=14)。PPH组、激动剂组和抑制剂组小鼠暴露在12%的氧浓度环境中,激动剂组和抑制剂组小鼠每天分别给予CaSR激动剂GdCl3(16 mg/kg)及其抑制剂NPS2390(1 mg/kg)腹腔注射1次;对照组小鼠暴露在空气中,并和PPH组每日以等量生理盐水替代注射;共持续14 d。采用苏木精-伊红染色行心脏和肺组织形态学检测;实时荧光定量PCR和Western bolt法分别检测各组小鼠肺组织中11β-HSD2 mRNA及其蛋白的表达水平;ELISA法检测各组小鼠肺组织中脑利钠肽(BNP)和皮质醇水平。结果 与对照组相比,PPH组肺小动脉血管壁厚度(WT%)、右心室与左心室壁厚度比(RV/LV)、肺泡平均内衬间隔及BNP浓度明显增加,径向肺泡计数减少(P < 0.05);WT%和BNP浓度在激动剂组较PPH组有所加重,而上述指标在抑制剂组均较PPH组有所减轻(P < 0.05)。与对照组相比,PPH组的11β-HSD2 mRNA及其蛋白表达水平降低,皮质醇浓度增加(P < 0.05);上述指标在激动剂组均较PPH组进一步加重,而在抑制剂组有一定程度的逆转(P < 0.05)。结论 CaSR可能通过调节11β-HSD2的表达及皮质醇浓度来控制新生小鼠PPH的发生发展。
Objective To investigate the effects of calcium-sensitive receptors (CaSR) on the expression of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) and cortisol concentration in a neonatal mouse model of persistent pulmonary hypertension (PPH). Methods Fifty-six newborn C57BL/6 mice were randomly divided into a control group (n=14), a PPH group (n=14), an agonist group (n=14), and an inhibitor group (n=14). The mice in the PPH, agonist, and inhibitor groups were exposed to a 12% oxygen concentration, and the agonist group and inhibitor group were given CaSR agonist (GdCl3, 16 mg/kg) and CaSR antagonist (NPS2390, 1 mg/kg) intraperitoneally once a day, respectively. The mice in control group were exposed to air, and then injected with an equal volume of normal saline as those in the PPH group every day. All mice were treated for 14 days. Morphological examination of heart and lung tissues was performed using hematoxylin-eosin staining. The expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein in lung tissues were measured by qRT-PCR and Western blot respectively. Brain natriuretic peptide (BNP) and cortisol levels in lung tissues were determined using ELISA. Results Compared with the control group, the PPH group had significantly increased pulmonary artery wall thickness (WT%), ratio of right to left ventricular thickness (RV/LV), alveolar mean linear intercept, and BNP concentration and a significantly reduced radial alveolar count (P < 0.05); compared with the PPH group, the agonist group showed significant increases in WT% and BNP concentration, while the inhibitor group showed significant reductions in the two indicators (P < 0.05). Compared with the control group, the PPH group showed significant reductions in the expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein, but a significant increase in cortisol concentration (P < 0.05); compared with the PPH group, the agonist group had significantly lower expression levels of 11β-HSD2 mRNA and 11β-HSD2 protein, but a significant higher cortisol concentration, while the inhibitor group showed opposite changes in these indicators (P < 0.05). Conclusions CaSR may control the development and progression of PPH in newborn mice by regulating the expression of 11β-HSD2 and cortisol concentration.
持续肺动脉高压 / 钙敏感受体 / Ⅱ型11β-羟基类固醇脱氢酶 / 皮质醇 / 新生小鼠
Persistent pulmonary hypertension / Calcium-sensitive receptor / 11β-hydroxysteroid dehydrogenase type 2 / Cortisol / Newborn mice
[1] Del Rey Hurtado de Mendoza B, Sánchez-de-Toledo J, Bobillo Perez S, et al. Lung ultrasound to assess the etiology of persistent pulmonary hypertension of the newborn (LUPPHYN Study):a pilot study[J]. Neonatology, 2019, 116(2):140-146.
[2] Kibe M, Ibara S, Inagaki H, et al. Lethal persistent pulmonary hypertension of the newborn in Bohring-Opitz syndrome[J]. Am J Med Genet A, 2018, 176(5):1245-1248.
[3] Ng QX, Venkatanarayanan N, Ho CYX, et al. Selective serotonin reuptake inhibitors and persistent pulmonary hypertension of the newborn:an update meta-analysis[J]. J Womens Health (Larchmt), 2019, 28(3):331-338.
[4] Burford NG, Webster NA, Cruz-Topete D. Hypothalamicpituitary-adrenal axis modulation of glucocorticoids in the cardiovascular system[J]. Int J Mol Sci, 2017, 18(10). pii:E2150.
[5] Chen L, Guilmette J, Luo ZC, et al. Placental 11β-HSD2 and cardiometabolic health indicators in infancy[J]. Diabetes Care, 2019, 42(5):964-971.
[6] Babooa N, Shi WJ, Chen C. Factors relating caesarean section to persistent pulmonary hypertension of the newborn[J]. World J Pediatr, 2017, 13(6):517-527.
[7] 张方方, 王彦梅, 田松柏, 等. 钙敏感受体及相关分子在新生大鼠持续肺动脉高压发病中的作用[J]. 中国新生儿科杂志, 2016, 31(4):64-68.
[8] 王萌萌, 李贺, 张方方, 等. 钙敏感受体在新生小鼠持续性肺动脉高压中的作用[J]. 中国当代儿科杂志, 2017, 19(2):208-214.
[9] 李贺, 谷强, 王萌萌, 等. 钙敏感受体对低氧诱导的持续性肺动脉高压小鼠肺动脉平滑肌细胞内钙离子浓度的影响[J]. 中国新生儿科杂志, 2018, 33(1):59-64.
[10] Ambalavanan N, Bulger A, Murphy-Ullrich J, et al. Endothelin-A receptor blockade prevents and partially reverses neonatal hypoxic pulmonary vascular remodeling[J]. Pediatr Res, 2005, 57(5 Pt 1):631-636.
[11] 甄毅岚. 钙敏感受体在小鼠缺血性脑卒中的作用及机制[D]. 合肥:安徽医科大学, 2014.
[12] Knudsen L, Weibel ER, Gundersen HJ, et al. Assessment of air space size characteristics by intercept (chord) measurement:an accurate and efficient stereological approach[J]. J Appl Physiol (1985), 2010, 108(2):412-421.
[13] Cooney TP, Thurlbeck WM. The radial alveolar count method of Emery and Mithal:a reappraisal 1-postnatal lung growth[J]. Thorax, 1982, 37(8):572-579.
[14] Alano MA, Ngougmna E, Ostrea EM Jr, et al. Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn[J]. Pediatrics, 2001, 107(3):519-523.
[15] Nakamura H, Zimmer J, Lim T, et al. Increased CaSR and TRPC6 pulmonary vascular expression in the nitrofen-induced model of congenital diaphragmatic hernia[J]. Pediatr Surg Int, 2018, 34(2):211-215.
[16] 李翔, 吴冰霞, 谷强, 等. 钙敏感受体对持续性肺动脉高压新生小鼠内皮型一氧化氮合酶及一氧化氮的影响[J]. 中国当代儿科杂志, 2019, 21(2):189-194.
[17] Kossintseva I, Wong S, Johnstone E, et al. Proinflammatory cytokines inhibit human placental 11beta-hydroxysteroid dehydrogenase type2 activity through Ca2+ and cAMP pathways[J]. Am J Physiol Endocrinol Metab, 2006, 290(2):E282-E288.
[18] Hardy DB, Dixon SJ, Narayanan N, et al. Calcium inhibits human placental 11beta-hydroxysteroid dehydrogenase type 2 activity[J]. Biochem Biophys Res Commun, 2001, 283(4):756-761.
[19] 倪晓田. 人绒毛膜促性腺激素促进胎盘糖皮质激素屏障11β-HSD2表达的机制研究[D]. 上海:复旦大学, 2010.
[20] Zhang L, Zhou J, Jing Z, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by soluble TNF-RII[J]. EBioMedicine, 2018, 27:247-257.
[21] Ong SL, Whitworth JA. How do glucocorticoids cause hypertension:role of nitricoxide deficiency, oxidative stress, and eicosanoids[J]. Endocrinol Metab Clin North Am, 2011, 40(2):393-407.
[22] Vahe C, Benomar K, Espiard S, et al. Diseases associated with calcium-sensing receptor[J]. Orphanet J Rare Dis, 2017, 12(1):19.
[23] Lee JW, Park HA, Kwon OK, et al. NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharideinduced pulmonary inflammation[J]. Mol Immunol, 2017, 90:150-157.
[24] Zhou C, Ye F, Wu H, et al. Recent advances in the study of 11β-hydroxysteroid dehydrogenase type 2(11β-HSD2) inhibitors[J]. Environ Toxicol Pharmacol, 2017, 52:47-53.
国家自然科学基金(81560257)。