鸢尾素对新生大鼠缺氧缺血性脑损伤的作用及机制

徐瑄培, 黄凌依, 赵凤艳, 应俊杰, 李世平, 岳艳, 李文星, 屈艺, 母得志

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 58-64.

PDF(3815 KB)
HTML
PDF(3815 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (1) : 58-64. DOI: 10.7499/j.issn.1008-8830.2020.01.012
论著·实验研究

鸢尾素对新生大鼠缺氧缺血性脑损伤的作用及机制

  • 徐瑄培1, 黄凌依2, 赵凤艳1, 应俊杰1, 李世平1, 岳艳1, 李文星1, 屈艺1, 母得志1
作者信息 +

Effect of irisin on hypoxic-ischemic brain damage in neonatal rats

  • XU Xuan-Pei1, HUANG Ling-Yi2, ZHAO Feng-Yan1, YING Jun-Jie1, LI Shi-Ping1, YUE Yan1, LI Wen-Xing1, QU Yi1, MU De-Zhi1
Author information +
文章历史 +

摘要

目的 探索鸢尾素对新生大鼠缺氧缺血性脑损伤的作用和机制。方法 将248只7日龄Sprague-Dawley大鼠随机分为假手术组、模型组、鸢尾素干预低剂量组及高剂量组(n=62)。模型组和鸢尾素干预组大鼠行右侧颈总动脉结扎后再行缺氧处理,建立缺氧缺血脑损伤模型。假手术组只分离右侧颈总动脉而不做结扎和缺氧处理。高、低剂量组大鼠分别于侧脑室注射0.15 μg、0.30 μg重组鸢尾素多肽,模型组及假手术组注射等量PBS。采用水迷宫实验检测各组大鼠神经行为学差异;采用TTC染色、苏木精-伊红染色和TUNEL染色检测各组大鼠脑组织病理改变;采用Western blot检测凋亡相关分子cleaved-caspase-3(CC3)及BCL-2/BAX的表达差异。结果 与假手术组相比,模型组大鼠潜伏期延长,穿越平台次数减少(P < 0.05);高剂量组大鼠潜伏期较模型组缩短,穿越平台次数较模型组增加(P < 0.05)。与假手术组比较,模型组大鼠右侧大脑半球出现大面积梗死,细胞核固缩及核裂解明显增多;高剂量组大鼠与模型组大鼠相比,右侧大脑半球梗死面积减少,细胞核固缩及核裂解减少。模型组大鼠右侧大脑皮层及海马区细胞凋亡率明显高于假手术组,高剂量组细胞凋亡率明显低于模型组(P < 0.05)。造模后24 h及48 h,假手术组CC3水平明显低于模型组(P < 0.05);高剂量组CC3水平明显低于模型组,BCL-2/BAX值明显高于模型组(P < 0.05)。低剂量组上述实验指标及脑组织病理变化情况与模型组类似。结论 鸢尾素可以有效减轻新生大鼠缺氧缺血性脑损伤,且疗效与鸢尾素使用剂量有关,其作用机制可能与减少大脑皮层及海马区域细胞凋亡相关。

Abstract

Objective To study the effect and mechanism of action of irisin on hypoxic-ischemic brain damage in neonatal rats. Methods A total of 248 7-day-old Sprague-Dawley rats were randomly divided into a sham-operation group, a model group, and low-and high-dose irisin intervention groups (n=62 each). The rats in the model and irisin intervention groups were given hypoxic treatment after right common carotid artery ligation to establish a model of hypoxic-ischemic brain damage. Those in the sham-operation group were given the separation of the right common carotid artery without ligation or hypoxic treatment. The rats in the high-and low-dose irisin intervention groups were given intracerebroventricular injection of recombinant irisin polypeptide at a dose of 0.30 μg and 0.15 μg respectively. Those in the model and sham-operation groups were given the injection of an equal volume of PBS. The water maze test was used to compare neurological behaviors between groups. TTC staining, hematoxylin-eosin staining and TUNEL staining were used to observe histopathological changes of the brain. Western blot was used to measure the expression of the apoptosis-related molecules cleaved-caspase-3 (CC3), BCL-2 and BAX. Results Compared with the sham-operation group, the model group had a significant increase in latency time and a significant reduction in the number of platform crossings (P < 0.05). Compared with the model group, the high-dose irisin intervention group had a significant reduction in latency time and a significant increase in the number of platform crossings (P < 0.05). Compared with the sham-operation group, the model group had massive infarction in the right hemisphere, with significant increases in karyopyknosis and karyorrhexis. Compared with the model group, the high-dose irisin intervention group had a smaller infarct area of the right hemisphere, with reductions in karyopyknosis and karyorrhexis. The model group had a significantly higher apoptosis rate of cells in the right cerebral cortex and the hippocampus than the sham-operation group. The high-dose irisin intervention group had a significantly lower apoptosis rate than the model group (P < 0.05). At 24 and 48 hours after modeling, the sham-operation group had a significantly lower level of CC3 than the model group (P < 0.05). Compared with the model group, the high-dose irisin intervention group had a significantly lower level of CC3 and a significantly higher BCL-2/BAX ratio (P < 0.05). The low-dose irisin intervention group had similar laboratory markers and histopathological changes of the brain to the model group. Conclusions Irisin can alleviate hypoxic-ischemic brain damage in neonatal rats in a dose-dependent manner, possibly by reducing cell apoptosis in the cerebral cortex and the hippocampus.

关键词

缺氧缺血性脑损伤 / 鸢尾素 / 细胞凋亡 / 新生大鼠

Key words

Hypoxic-ischemic brain damage / Irisin / Apoptosis / Neonatal rats

引用本文

导出引用
徐瑄培, 黄凌依, 赵凤艳, 应俊杰, 李世平, 岳艳, 李文星, 屈艺, 母得志. 鸢尾素对新生大鼠缺氧缺血性脑损伤的作用及机制[J]. 中国当代儿科杂志. 2020, 22(1): 58-64 https://doi.org/10.7499/j.issn.1008-8830.2020.01.012
XU Xuan-Pei, HUANG Ling-Yi, ZHAO Feng-Yan, YING Jun-Jie, LI Shi-Ping, YUE Yan, LI Wen-Xing, QU Yi, MU De-Zhi. Effect of irisin on hypoxic-ischemic brain damage in neonatal rats[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(1): 58-64 https://doi.org/10.7499/j.issn.1008-8830.2020.01.012

参考文献

[1] Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy:an update on disease pathogenesis and treatment[J]. Expert Rev Neurother, 2017, 17(5):449-459.
[2] Wassink G, Davidson JO, Dhillon SK, et al. Therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy[J]. Curr Neurol Neurosci Rep, 2019, 19(2):2.
[3] Rao R, Trivedi S, Vesoulis Z, et al. Safety and short-term outcomes of therapeutic hypothermia in preterm neonates 34-35 weeks gestational age with hypoxic-ischemic encephalopathy[J]. J Pediatr, 2017, 183:37-42.
[4] Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382):463-468.
[5] Ruan Q, Zhang L, Ruan J, et al. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry[J]. Peptides, 2018, 103:60-64.
[6] Aydin S, Kuloglu T, Aydin S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus[J]. Peptides, 2013, 47:66-70.
[7] Aydin S, Aydin S, Kuloglu T, et al. Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running[J]. Peptides, 2013, 50:13-18.
[8] Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy:an update on disease pathogenesis and treatment[J]. Expert Rev Neurother, 2017, 17(5):449-459.
[9] Chen K, Xu Z, Liu Y, et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury[J]. Sci Transl Med, 2017, 9(418). pii:eaao6298.
[10] Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family:Bcl-2 proteins and apoptosis:an update[J]. Arch Toxicol, 2015, 89(3):289-317.
[11] Charriaut-Marlangue C, Besson VC, Baud O. Sexually dimorphic outcomes after neonatal stroke and hypoxia-ischemia[J]. Int J Mol Sci, 2017, 19(1). pii:E61.
[12] Zheng Z, Zhang L, Qu Y, et al. Mesenchymal stem cells protect against hypoxia-ischemia brain damage by enhancing autophagy through brain derived neurotrophic factor/mammalin target of rapamycin signaling pathway[J]. Stem Cells, 2018, 36(7):1109-1121.
[13] Asadi Y, Gorjipour F, Behrouzifar S, et al. Irisin peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke[J]. Neurochem Res, 2018, 43(8):1549-1560.
[14] Gopagondanahalli KR, Li J, Fahey MC, et al. Preterm hypoxic-ischemic encephalopathy[J]. Front Pediatr, 2016, 4:114.
[15] Bi J, Zhang J, Ren Y, et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress[J]. Redox Biol, 2019, 20:296-306.
[16] Liao Q, Qu S, Tang LX, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis[J]. Acta Pharmacol Sin, 2019, 40(10):1314-1321.
[17] Thornton C, Leaw B, Mallard C, et al. Cell death in the developing brain after hypoxia-ischemia[J]. Front Cell Neurosci, 2017, 11:248.
[18] Thornton C, Hagberg H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain[J]. Clin Chim Acta, 2015, 451(Pt A):35-38.
[19] Walensky LD. Targeting BAX to drug death directly[J]. Nat Chem Biol, 2019, 15(7):657-665.

基金

国家自然科学基金(81630038;81771634;81842011;81971433;81971428);国家临床重点专科基金(1311200003303)。

PDF(3815 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/