MYCN扩增型神经母细胞瘤潜在预后生物标志物的综合性分析

范煦, 鹿洪亭, 侯琳, 张丽, 杨槟伊, 陈伟明, 张桓瑜, 陈鑫, 李富江

中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (3) : 262-268.

PDF(1846 KB)
HTML
PDF(1846 KB)
HTML
中国当代儿科杂志 ›› 2020, Vol. 22 ›› Issue (3) : 262-268. DOI: 10.7499/j.issn.1008-8830.2020.03.015
论著·临床研究

MYCN扩增型神经母细胞瘤潜在预后生物标志物的综合性分析

  • 范煦1, 鹿洪亭1, 侯琳2, 张丽2, 杨槟伊1, 陈伟明1, 张桓瑜1, 陈鑫1, 李富江1
作者信息 +

A comprehensive analysis of potential prognostic biomarkers for MYCN-amplified neuroblastoma

  • FAN Xu1, LU Hong-Ting1, HOU Lin2, ZHANG Li2, YANG Bin-Yi1, CHEN Wei-Ming1, ZHANG Huan-Yu1, CHEN Xin1, LI FuJiang1
Author information +
文章历史 +

摘要

目的 分析比较MYCN扩增型神经母细胞瘤(NB)和MYCN非扩增型NB表达mRNA的差别,筛选具有预测MYCN扩增型NB预后功能的基因并分析其对预后的预测价值。方法 从TARGET数据库获得NB转录组数据和患儿临床资料,根据有无MYCN扩增分为MYCN扩增组(n=33)和MYCN非扩增组(n=121),对两组mRNA进行差异分析,得到差异表达基因(DEGs)。采用GO和KEGG数据库分析DEGs的主要功能。采用Cox比例风险回归模型分析影响MYCN扩增组NB预后的基因,根据风险评分的中位值分为高风险组(n=77)和低风险组(n=77),采用生存分析法比较两组生存率,ROC曲线分析风险评分对MYCN扩增型NB患儿预后的预测价值。结果 共筛选出582个DEGs,这些DEGs参与了核糖体组成、细胞黏附蛋白的表达以及膜蛋白受体活动等重要生物功能。多因素Cox回归模型分析结果显示FLVCR2、SCN7A、PRSS12、NTRK1、XAGE1A基因对MYCN扩增组NB患儿预后具有显著性影响(均P < 0.05)。生存分析发现,高风险组的总生存率低于低风险组(P < 0.05)。ROC分析显示,风险评分对MYCN扩增组NB患儿预后有预测价值(P < 0.05),曲线下面积为0.729,最佳截断值为1.316,灵敏度为53.2%,特异度为84.4%。结论 FLVCR2、SCN7A、PRSS12、NTRK1、XAGE1A基因的mRNA可作为预测MYCN扩增型NB预后的生物标志物,有助于细化临床危险分层。

Abstract

Objective To study the differentially expressed mRNAs between MYCN-amplified neuroblastoma (NB) and non-amplified NB, to screen out the genes which can be used to predict the prognosis of MYCN-amplified NB, and to analyze their value in predicting prognosis. Methods NB transcriptome data and the clinical data of children were obtained from the TARGET database. According to the presence or absence of MYCN amplification, the children were divided into two groups:MYCN amplification (n=33) and non-MYCN amplification (n=121). The expression of mRNAs was compared between the two groups to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis was performed to investigate the main functions of DEGs. The Cox proportional-hazards regression model analysis was used to investigate the genes influencing the prognosis of MYCN-amplified NB. The children were divided into a high-risk group (n=77) and a low-risk group (n=77) based on the median of risk score. A survival analysis was used to compare survival rate between the two groups. The receiver operating characteristic (ROC) curve was used to investigate the value of risk score in predicting the prognosis of children with MYCN-amplified NB. Results A total of 582 DEGs were screened out, and they were involved in important biological functions such as ribosome composition, expression of cell adhesion molecules, and activity of membrane receptor protein. The multivariate Cox regression model analysis showed that FLVCR2, SCN7A, PRSS12, NTRK1, and XAGE1A genes had a marked influence on the prognosis of the children with NB in the MYCN amplification group (P < 0.05). The survival analysis showed that the high-risk group had a significantly lower overall survival rate than the low-risk group (P < 0.05). The ROC curve analysis showed that risk score had a certain value in predicting the prognosis of the children with NB in the MYCN amplification group (P < 0.05), with an area under the ROC curve of 0.729, an optimal cut-off value of 1.316, a sensitivity of 53.2%, and a specificity of 84.4%. Conclusions The mRNA expression of FLVCR2, SCN7A, PRSS12, NTRK1, and XAGE1A genes can be used as biomarkers to predict the prognosis of MYCN-amplified NB, which can help to refine clinical risk stratification.

关键词

神经母细胞瘤 / mRNA / MYCN基因 / 预后 / 儿童

Key words

Neuroblastoma / mRNA / MYCN gene / Prognosis / Child

引用本文

导出引用
范煦, 鹿洪亭, 侯琳, 张丽, 杨槟伊, 陈伟明, 张桓瑜, 陈鑫, 李富江. MYCN扩增型神经母细胞瘤潜在预后生物标志物的综合性分析[J]. 中国当代儿科杂志. 2020, 22(3): 262-268 https://doi.org/10.7499/j.issn.1008-8830.2020.03.015
FAN Xu, LU Hong-Ting, HOU Lin, ZHANG Li, YANG Bin-Yi, CHEN Wei-Ming, ZHANG Huan-Yu, CHEN Xin, LI FuJiang. A comprehensive analysis of potential prognostic biomarkers for MYCN-amplified neuroblastoma[J]. Chinese Journal of Contemporary Pediatrics. 2020, 22(3): 262-268 https://doi.org/10.7499/j.issn.1008-8830.2020.03.015

参考文献

[1] Matthay K K, Maris J M, Schleiermacher G, et al. Neuroblastoma[J]. Nat Rev Dis Primers, 2016, 2:16078.
[2] Tsubota S, Kadomatsu K. Origin and initiation mechanisms of neuroblastoma[J]. Cell Tissue Res, 2018, 372(2):211-221.
[3] Huang M, Weiss WA. Neuroblastoma and MYCN[J]. Cold Spring Harb Perspect Med, 2013, 3(10):a014415.
[4] 赖祥萍, 赖天霞, 廖伟. 神经母细胞瘤中N-myc的作用机制研究进展[J]. 医学综述, 2017, 23(5):926-930.
[5] Campbell K, Gastier-Foster JM, Mann M, et al. Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma:a report from the Children's Oncology Group[J]. Cancer, 2017, 123(21):4224-4235.
[6] Maris JM. Recent advances in neuroblastoma[J]. N Engl J Med, 2010, 362(23):2202-2211.
[7] Nikolayeva O, Robinson MD. edgeR for differential RNA-seq and ChIP-seq analysis:an application to stem cell biology[J]. Methods Mol Biol, 2014, 1150:45-79.
[8] Rosenblum M, Qian T, Du Y, et al. Multiple testing procedures for adaptive enrichment designs:combining group sequential and reallocation approaches[J]. Biostatistics, 2016, 17(4):650-662.
[9] Maere S, Heymans K, Kuiper M. BiNGO:a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[J]. Bioinformatics, 2005, 21(16):3448-3449.
[10] Xia L, Wang Y, Meng Q, et al. Integrated bioinformatic analysis of a competing endogenous RNA network reveals a prognostic signature in endometrial cancer[J]. Front Oncol, 2019, 9:448.
[11] Fletcher JI, Ziegler DS, Trahair TN, et al. Too many targets, not enough patients:rethinking neuroblastoma clinical trials[J]. Nat Rev Cancer, 2018, 18(6):389-400.
[12] Delaidelli A, Negri GL, Jan A, et al. MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation[J]. Cell Death Differ, 2017, 24(9):1564-1576.
[13] Ruiz-Pérez MV, Henley AB, Arsenian-Henriksson M. The MYCN protein in health and disease[J]. Genes (Basel), 2017, 8(4). pii:E113.
[14] Meyer E, Ricketts C, Morgan NV, et al. Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome)[J]. Am J Hum Genet, 2010, 86(3):471-478.
[15] Ke CB, He WS, Li CJ, et al. Enhanced SCN7A/Nax expression contributes to bone cancer pain by increasing excitability of neurons in dorsal root ganglion[J]. Neuroscience, 2012, 227:80-89.
[16] Mitsui S, Osako Y, Yuri K. Mental retardation-related protease, motopsin (prss12), binds to the BRICHOS domain of the integral membrane protein 2a[J]. Cell Biol Int, 2014, 38(1):117-123.
[17] Pajtler KW, Rebmann V, Lindemann M, et al. Expression of NTRK1/TrkA affects immunogenicity of neuroblastoma cells[J]. Int J Cancer, 2013, 133(4):908-919.
[18] Li Z, Takenobu H, Setyawati AN, et al. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications[J]. Oncogene, 2018, 37(20):2714-2727.
[19] Schramm A, Schowe B, Fielitz K, et al. Exon-level expression analyses identify MYCN and NTRK1 as major determinants of alternative exon usage and robustly predict primary neuroblastoma outcome[J]. Br J Cancer, 2012, 107(8):1409-1417.
[20] 姚伟, 李凯, 郑珊. 神经母细胞瘤靶向治疗的应用现状和展望[J]. 中华小儿外科杂志, 2018, 39(10):792-796.

基金

青岛市科技局民生科技计划项目(18-6-1-71-nsh)。


PDF(1846 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/