LAMA2双等位基因致病性变异导致先天性肌营养不良1A型(CMD1A)。该研究患儿为19月龄男孩,临床表现为运动发育落后,伴血清肌酸激酶、转氨酶及乳酸脱氢酶升高。遗传学分析发现患儿LAMA2基因存在复合杂合变异,其中母源性c.7147C > T (p.Ala2383Ter)为已报道的无义变异,而父源性c.8551_8552insAA (p.Ile2852ArgfsTer2)为未报道的移码变异,且根据ACMG指南确定为致病性变异。该患儿最终确诊为CMD1A。国内外文献复习发现:该病患儿多在生后6个月内起病,以严重的运动发育落后为特点,伴有血清肌酸激酶升高,可有脑白质受累的影像学改变;LAMA2基因变异具有明显的异质性,且绝大部分属于零效变异;目前CMD1A患儿无特异性治疗,远期预后不良。
Abstract:Biallelic pathogenic mutations of the LAMA2 gene result in congenital muscular dystrophy type 1A (CMD1A). The patient in this study was a boy aged 19 months, with the clinical manifestations of motor development delay and increases in the serum levels of creatine kinase, aminotransferases, and lactate dehydrogenase. Genetic analysis showed that the patient had compound heterozygous mutations in the LAMA2 gene, among which c.7147C > T (p.Ala2383Ter) from his mother was a known nonsense mutation, and c.8551_8552insAA (p.Ile2852ArgfsTer2) from his father was a frameshift mutation which had never been reported before and was identified as a pathogenic mutation based on the ACMG guideline. The boy was confirmed with CMD1A. A literature review of related articles in China and overseas revealed that most children with CMD1A have disease onset within 6 months after birth, with the features of motor developmental delay, elevated serum creatine kinase, and white matter impairment on imaging examination. The mutations of the LAMA2 gene have remarkable heterogeneity, the majority of which are null mutations. There are no specific treatment methods for CMD1A currently, and children with CMD1A usually have a poor long-term prognosis.
GUO Li,TANG Wen-Min,SONG Yuan-Zong. Clinical features and LAMA2 mutations of patients with congenital muscular dystrophy type 1A: a case report and literature review[J]. CJCP, 2020, 22(6): 608-613.
Bönnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies[J]. Neuromuscul Disord, 2014, 24(4):289-311.
[3]
Falsaperla R, Praticò AD, Ruggieri M, et al. Congenital muscular dystrophy:from muscle to brain[J]. Ital J Pediatr, 2016, 42(1):78.
[4]
Zhang X, Vuolteenaho R, Tryggvason K. Structure of the human laminin alpha2-chain gene (LAMA2), which is affected in congenital muscular dystrophy[J]. J Biol Chem, 1996, 271(44):27664-27669.
[5]
Campbell KP. Three muscular dystrophies:loss of cytoskeleton-extracellular matrix linkage[J]. Cell, 1995, 80(5):675-679.
[6]
Muntoni F, Voit T. The congenital muscular dystrophies in 2004:a century of exciting progress[J]. Neuromuscul Disord, 2004, 14(10):635-649.
[7]
Sparks SE, Quijano-Roy S, Harper A, et al. Congenital muscular dystrophy overview-archived chapter, for historical reference only[EB/OL]. GeneReviews®. (2012-08-23)[2020-01-18]. https://www.ncbi.nlm.nih.gov/books/NBK1291/pdf/Bookshelf_NBK1291.pdf.
Pegoraro E, Fanin M, Trevisan CP, et al. A novel laminin alpha2 isoform in severe laminin alpha2 deficient congenital muscular dystrophy[J]. Neurology, 2000, 55(8):1128-1134.
[18]
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17(5):405-424.
[19]
He Z, Luo X, Liang L, et al. Merosin-deficient congenital muscular dystrophy type 1A:a case report[J]. Exp Ther Med, 2013, 6(5):1233-1236.
[20]
Ge L, Liu A, Gao K, et al. Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy[J]. Sci Rep, 2018, 8(1):14989.
Incecik F, Herguner OM, Ceylaner S, et al. Merosin-negative congenital muscular dystrophy:report of five cases[J]. J Pediatr Neurosci, 2015, 10(4):346-349.
[24]
Dimova I, Kremensky I. LAMA2 congenital muscle dystrophy:a novel pathogenic mutation in bulgarian patient[J]. Case Rep Genet, 2018, 2018:3028145.
[25]
Di Blasi C, Bellafiore E, Salih MA, et al. Variable disease severity in Saudi Arabian and Sudanese families with c.3924+2T > C mutation of LAMA2[J]. BMC Res Notes, 2011, 4:534.
[26]
Andrade RC, Nevado J, de Faria Domingues de Lima MA, et al. Segmental uniparental isodisomy of chromosome 6 causing transient diabetes mellitus and merosin-deficient congenital muscular dystrophy[J]. Am J Med Genet A, 2014, 164A(11):2908-2913.
[27]
Beytía Mde L, Dekomien G, Hoffjan S, et al. High creatine kinase levels and white matter changes:clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency[J]. Mol Cell Probes, 2014, 28(4):118-122.
[28]
Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage[J]. Clin Chem Lab Med, 2010, 48(6):757-767.
[29]
Jones KJ, Morgan G, Johnston H, et al. The expanding phenotype of laminin alpha2 chain (merosin) abnormalities:case series and review[J]. J Med Genet, 2001, 38(10):649-657.
Farina L, Morandi L, Milanesi I, et al. Congenital muscular dystrophy with merosin deficiency:MRI findings in five patients[J]. Neuroradiology, 1998, 40(12):807-811.
[32]
Korones DN, Brown MR, Palis J. "Liver function tests" are not always tests of liver function[J]. Am J Hematol, 2001, 66(1):46-48.
Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy:progress and challenges[J]. Neurotherapeutics, 2015, 12(2):290-302.
[35]
Suthar R, Sankhyan N. Duchenne muscular dystrophy:a practice update[J]. Indian J Pediatr, 2018, 85(4):276-281.
[36]
Rooney JE, Knapp JR, Hodges BL, et al. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy[J]. Am J Pathol, 2012, 180(4):1593-1602.
[37]
Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A:pathogenesis and treatment strategies[J]. Skelet Muscle, 2011, 1(1):9.