Effect of electrode temperature on measurements of transcutaneous carbon dioxide partial pressure and oxygen partial pressure in very low birth weight infants
LI Bing-Hui, ZHAO Chang-Liang, CAO Shun-Li, GENG Hong-Li, LI Jing-Jing, ZHU Min, NIU Shi-Ping
Department of Neonatology, Zibo Maternal and Child Health Hospital, Zibo, Shandong 255000, China
Abstract:Objective To evaluate the accuracy and safety of measurements of transcutaneous carbon dioxide partial pressure (TcPCO2) and transcutaneous oxygen partial pressure (TcPO2) at electrode temperatures lower than the value used in clinical practice in very low birth weight infants. Methods A total of 45 very low birth weight infants were enrolled. TcPCO2 and TcPO2 measurements were performed in these infants. Two transcutaneous monitors were placed simultaneously for each subject. One electrode was set and maintained at 42℃ used in clinical practice for neonates (control group), and the other was successively set at 38℃, 39℃, 40°C, and 41℃ (experimental group). The paired t-test was used to compare the measurement results between the groups. A Pearson correlation analysis was used to analyze the correlation between the measurement results of the experimental group and control group, and between the measurement results of experimental group and arterial blood gas parameters. Results There was no significant difference in TcPCO2 between each experimental subgroup (38-41℃) and the control group. TcPCO2 in each experimental subgroup (38-41℃) was strongly positively correlated with TcPCO2 in the control group (r>0.9, P<0.05) and arterial carbon dioxide partial pressure (r>0.8, P<0.05). There were significant differences in TcPO2 between each experimental subgroup (38-41℃) and the control group (P<0.05), but TcPO2 in each experimental subgroup (38-41℃) was positively correlated with TcPO2 in the control group (r=0.493-0.574, P<0.05) and arterial oxygen partial pressure (r=0.324-0.399, P<0.05). No skin injury occurred during transcutaneous measurements at all electrode temperatures. Conclusions Lower electrode temperatures (38-41℃) can accurately measure blood carbon dioxide partial pressure in very low birth weight infants, and thus can be used to replace the electrode temperature of 42°C. Transcutaneous measurements at the lower electrode temperatures may be helpful for understanding the changing trend of blood oxygen partial pressure.
LI Bing-Hui,ZHAO Chang-Liang,CAO Shun-Li et al. Effect of electrode temperature on measurements of transcutaneous carbon dioxide partial pressure and oxygen partial pressure in very low birth weight infants[J]. CJCP, 2021, 23(8): 809-813.
Kugelman A, Golan A, Riskin A, et al. Impact of continuous capnography in ventilated neonates: a randomized, multicenter study[J]. J Pediatr, 2016, 168: 56-61.e2. DOI: 10.1016/j.jpeds.2015.09.051. PMID: 26490126.
Garland JS, Buck RK, Allred EN, et al. Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome[J]. Arch Pediatr Adolesc Med, 1995, 149(6): 617-622. DOI: 10.1001/archpedi.1995.02170190027005. PMID: 7767415.
Huttmann SE, Windisch W, Storre JH. Techniques for the measurement and monitoring of carbon dioxide in the blood[J]. Ann Am Thorac Soc, 2014, 11(4): 645-652. DOI: 10.1513/AnnalsATS.201311-387FR. PMID: 24701974.
Williams AJ. ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance[J]. BMJ, 1998, 317(7167): 1213-1216. DOI: 10.1136/bmj.317.7167.1213. PMID: 9794863. PMCID: PMC1114160.
Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions[J]. Anesth Analg, 2007, 105(6 Suppl): S48-S52. DOI: 10.1213/01.ane.0000278642.16117.f8. PMID: 18048898.
Jakubowicz JF, Bai SS, Matlock DN, et al. Effect of transcutaneous electrode temperature on accuracy and precision of carbon dioxide and oxygen measurements in the preterm infants[J]. Respir Care, 2018, 63(7): 900-906. DOI: 10.4187/respcare.05887. PMID: 29717098.
Aly S, El-Dib M, Mohamed M, et al. Transcutaneous carbon dioxide monitoring with reduced-temperature probes in very low birth weight infants[J]. Am J Perinatol, 2017, 34(5): 480-485. DOI: 10.1055/s-0036-1593352. PMID: 27673754.
Dix LML, Weeke LC, de Vries LS, et al. Carbon dioxide fluctuations are associated with changes in cerebral oxygenation and electrical activity in infants born preterm[J]. J Pediatr, 2017, 187: 66-72.e1. DOI: 10.1016/j.jpeds.2017.04.043. PMID: 28578157.
Wiswell TE, Graziani LJ, Kornhauser MS, et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation[J]. Pediatrics, 1996, 98(5): 918-924. PMID:8909486.
Thome UH, Genzel-Boroviczeny O, Bohnhorst B, et al. Neurodevelopmental outcomes of extremely low birthweight infants randomised to different PCO2 targets: the PHELBI follow-up study[J]. Arch Dis Child Fetal Neonatal Ed, 2017, 102(5): F376-F382. DOI: 10.1136/archdischild-2016-311581. PMID: 28087725.
Fabres J, Carlo WA, Phillips V, et al. Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants[J]. Pediatrics, 2007, 119(2): 299-305. DOI: 10.1542/peds.2006-2434. PMID: 17272619.
Altaany D, Natarajan G, Gupta D, et al. Severe intraventricular hemorrhage in extremely premature infants: are high carbon dioxide pressure or fluctuations the culprit?[J]. Am J Perinatol, 2015, 32(9): 839-844. DOI: 10.1055/s-0034-1543950. PMID: 25607222.
Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis[J]. JAMA Pediatr, 2015, 169(4): 332-340. DOI: 10.1001/jamapediatrics.2014.3307. PMID: 25664703. PMCID: PMC4388792.
Askie LM, Darlow BA, Davis PG, et al. Effects of targeting lower versus higher arterial oxygen saturations on death or disability in preterm infants[J]. Cochrane Database Syst Rev, 2017, 4(4): CD011190. DOI: 10.1002/14651858.CD011190.pub2. PMID: 28398697. PMCID: PMC6478245.
Klingenberg C, Wheeler KI, McCallion N, et al. Volume-targeted versus pressure-limited ventilation in neonates[J]. Cochrane Database Syst Rev, 2017, 10(10): CD003666. DOI: 10.1002/14651858.CD003666.pub4. PMID: 29039883. PMCID: PMC6485452.
Ambalavanan N, Carlo WA, Wrage LA, et al. PaCO2 in surfactant, positive pressure, and oxygenation randomised trial (support)[J]. Arch Dis Child Fetal Neonatal Ed, 2015, 100(2): F145-F149. DOI: 10.1136/archdischild-2014-306802. PMID: 25425651. PMCID: PMC4336211.
Thome UH, Dreyhaupt J, Genzel-Boroviczeny O, et al. Influence of PCO2 control on clinical and neurodevelopmental outcomes of extremely low birth weight infants[J]. Neonatology, 2018, 113(3): 221-230. DOI: 10.1159/000485828. PMID: 29298438.
Tingay DG, Mun KS, Perkins EJ. End tidal carbon dioxide is as reliable as transcutaneous monitoring in ventilated postsurgical neonates[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(2): F161-F164. DOI: 10.1136/fetalneonatal-2011-301606. PMID: 22887048.
Berkenbosch JW, Tobias JD. Transcutaneous carbon dioxide monitoring during high-frequency oscillatory ventilation in infants and children[J]. Crit Care Med, 2002, 30(5): 1024-1027. DOI: 10.1097/00003246-200205000-00011. PMID: 12006797.
Bruschettini M, Romantsik O, Zappettini S, et al. Transcutaneous carbon dioxide monitoring for the prevention of neonatal morbidity and mortality[J]. Cochrane Database Syst Rev, 2016, 2: CD011494. DOI: 10.1002/14651858.CD011494.pub2. PMID: 26874180.
Hirata K, Nishihara M, Oshima Y, et al. Application of transcutaneous carbon dioxide tension monitoring with low electrode temperatures in premature infants in the early postnatal period[J]. Am J Perinatol, 2014, 31(5): 435-440. DOI: 10.1055/s-0033-1352485. PMID: 23918520.
Hochwald O, Borenstein-Levin L, Dinur G, et al. Continuous noninvasive carbon dioxide monitoring in neonates: from theory to standard of care[J]. Pediatrics, 2019, 144(1): e20183640. DOI: 10.1542/peds.2018-3640. PMID: 31248940.
Barter LS, Hopper K. Transcutaneous monitor approximates PaCO2 but not PaO2 in anesthetized rabbits[J]. Vet Anaesth Analg, 2011, 38(6): 568-575. DOI: 10.1111/j.1467-2995.2011.00662.x. PMID: 21988811.
S?rensen LC, Brage-Andersen L, Greisen G. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension[J]. Scand J Clin Lab Invest, 2011, 71(7): 548-552. DOI: 10.3109/00365513.2011.590601. PMID: 21732731. PMCID: PMC3212912.