Recent research on childhood hypertrophic cardiomyopathy caused by MYH7 gene mutations
ZHENG Kui, LIU Lu
Author information+
Department of Cardiology, Hebei Children's Hospital/Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Shijiazhuang 050031, China (Zhang Y-Q, Email: zhangyingqian666@163.com)
Show less
文章历史+
收稿日期
出版日期
2022-11-08
2023-04-19
发布日期
2023-04-19
摘要
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是儿童中最常见的单基因遗传性心肌病。肌节基因[β-肌球蛋白重链(cardiac beta-myosin heavy chain,MYH7)、MYBPC3等基因]突变是HCM最常见的遗传学病因,其中以MYH7基因突变最常见,占30%~50%。MYH7基因突变具有受环境因素影响、可合并多个基因变异,以及年龄依赖的外显率等特点,使患儿临床表型不一或重叠,包括多种心肌病和骨骼肌疾病。目前关于MYH7基因突变导致儿童HCM的发病机制、病程及预后尚不明确。该文通过总结MYH7基因突变导致HCM可能的发病机制、临床表型及治疗,以期有利于患儿的精准预后评估、个体化管理及治疗。 中国当代儿科杂志,2023,25(4):425-430]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic inherited myocardial disease in children, and mutations in sarcomere genes (such as MYH7 and MYBPC3) are the most common genetic etiology of HCM, among which mutations in the MYH7 gene are the most common and account for 30%-50%. MYH7 gene mutations have the characteristics of being affected by environmental factors, coexisting with multiple genetic variations, and age-dependent penetrance, which leads to different or overlapping clinical phenotypes in children, including various cardiomyopathies and skeletal myopathies. At present, the pathogenesis, course, and prognosis of HCM caused by MYH7 gene mutations in children remain unclear. This article summarizes the possible pathogenesis, clinical phenotype, and treatment of HCM caused by MYH7 gene mutations, in order to facilitate the accurate prognostic evaluation and individualized management and treatment of the children with this disorder. Citation:Chinese Journal of Contemporary Pediatrics, 2023, 25(4): 425-430
ZHENG Kui, LIU Lu.
Recent research on childhood hypertrophic cardiomyopathy caused by MYH7 gene mutations[J]. Chinese Journal of Contemporary Pediatrics. 2023, 25(4): 425-430 https://doi.org/10.7499/j.issn.1008-8830.2211044
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Wang S, Zhu C. Hypertrophic cardiomyopathy in children[J]. Asian Cardiovasc Thorac Ann, 2022, 30(1): 92-97. PMID: 34569255. DOI: 10.1177/02184923211041285. 2 张艳敏. 儿童肥厚型心肌病的遗传学研究进展[J]. 中国实用儿科杂志, 2019, 34(5): 362-367. DOI: 10.19538/j.ek2019050609. 3 Herrera-Rodríguez DL, Totomoch-Serra A, Rosas-Madrigal S, et al. Genes frequently associated with sudden death in primary hypertrophic cardiomyopathy[J]. Arch Cardiol Mex, 2020, 90(1): 58-68. PMID: 31996869. DOI: 10.24875/ACM.19000294. 4 Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, et al. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals[J]. Clin Res Cardiol, 2018, 107(1): 30-41. PMID: 28840316. DOI: 10.1007/s00392-017-1155-5. 5 Rupp S, Felimban M, Sch?nzer A, et al. Genetic basis of hypertrophic cardiomyopathy in children[J]. Clin Res Cardiol, 2019, 108(3): 282-289. PMID: 30105547. DOI: 10.1007/s00392-018-1354-8. 6 郑奎, 张英谦, 刘露, 等. 32例儿童心肌病基因检测与临床特征分析[J]. 临床心血管病杂志, 2022, 38(7): 566-571. DOI: 10.13201/j.issn.1001-1439.2022.07.010. 7 Liu HT, Ji FF, Wei L, et al. Screening of MYH7 gene mutation sites in hypertrophic cardiomyopathy and its significance[J]. Chin Med J (Engl), 2019, 132(23): 2835-2841. PMID: 31856055. PMCID: PMC6940073. DOI: 10.1097/CM9.0000000000000428. 8 Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies[J]. Annu Rev Genomics Hum Genet, 2019, 20: 129-153. PMID: 30978303. DOI: 10.1146/annurev-genom-083118-015306. 9 Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy[J]. Pflugers Arch, 2019, 471(5): 719-733. PMID: 30740621. PMCID: PMC6475633. DOI: 10.1007/s00424-019-02260-9. 10 Hayashi T, Tanimoto K, Hirayama-Yamada K, et al. Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy[J]. J Hum Genet, 2018, 63(9): 989-996. PMID: 29907873. DOI: 10.1038/s10038-018-0479-y. 11 Colegrave M, Peckham M. Structural implications of β-cardiac myosin heavy chain mutations in human disease[J]. Anat Rec (Hoboken), 2014, 297(9): 1670-1680. PMID: 25125180. DOI: 10.1002/ar.22973. 12 曹红, 赵跃, 冯悦, 等. 中国人群肥厚型心肌病MYH7基因突变的研究与展望[J]. 医学分子生物学杂志, 2016(1): 27-34. DOI: 10.3870/j.issn.1672-8009.2016.01.006. 13 van der Meulen MH, Herkert JC, den Boer SL, et al. Genetic evaluation of a nation-wide Dutch pediatric DCM cohort: the use of genetic testing in risk stratification[J]. Circ Genom Precis Med, 2022, 15(5): e002981. PMID: 36178741. PMCID: PMC9622377. DOI: 10.1161/CIRCGEN.120.002981. 14 Hershkovitz T, Kurolap A, Ruhrman-Shahar N, et al. Clinical diversity of MYH7-related cardiomyopathies: insights into genotype-phenotype correlations[J]. Am J Med Genet A, 2019, 179(3): 365-372. PMID: 30588760. DOI: 10.1002/ajmg.a.61017. 15 Wijnker PJM, van der Velden J. Mutation-specific pathology and treatment of hypertrophic cardiomyopathy in patients, mouse models and human engineered heart tissue[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(8): 165774. PMID: 32217077. DOI: 10.1016/j.bbadis.2020.165774. 16 Moore JR, Leinwand L, Warshaw DM. Understanding cardiomyopathy phenotypes based on the functional impact of mutations in the myosin motor[J]. Circ Res, 2012, 111(3): 375-385. PMID: 22821910. PMCID: PMC3947556. DOI: 10.1161/CIRCRESAHA.110.223842. 17 Shahzadi SK, Naidoo N, Alsheikh-Ali A, et al. Reconnoitering the role of long-noncoding RNAs in hypertrophic cardiomyopathy: a descriptive review[J]. Int J Mol Sci, 2021, 22(17): 9378. PMID: 34502285. PMCID: PMC8430576. DOI: 10.3390/ijms22179378. 18 Sabater-Molina M, Pérez-Sánchez I, Hernández Del Rincón JP, et al. Genetics of hypertrophic cardiomyopathy: a review of current state[J]. Clin Genet, 2018, 93(1): 3-14. PMID: 28369730. DOI: 10.1111/cge.13027. 19 Ferradini V, Parca L, Martino A, et al. Variants in MHY7 gene cause arrhythmogenic cardiomyopathy[J]. Genes (Basel), 2021, 12(6): 793. PMID: 34067482. PMCID: PMC8224781. DOI: 10.3390/genes12060793. 20 de Frutos F, Ochoa JP, Navarro-Pe?alver M, et al. Natural history of MYH7-related dilated cardiomyopathy[J]. J Am Coll Cardiol, 2022, 80(15): 1447-1461. PMID: 36007715. DOI: 10.1016/j.jacc.2022.07.023. 21 Walsh R, Rutland C, Thomas R, et al. Cardiomyopathy: a systematic review of disease-causing mutations in myosin heavy chain 7 and their phenotypic manifestations[J]. Cardiology, 2010, 115(1): 49-60. PMID: 19864899. DOI: 10.1159/000252808. 22 Lee SP, Ashley EA, Homburger J, et al. Incident atrial fibrillation is associated with MYH7 sarcomeric gene variation in hypertrophic cardiomyopathy[J]. Circ Heart Fail, 2018, 11(9): e005191. PMID: 30354366. DOI: 10.1161/CIRCHEARTFAILURE.118.005191. 23 Cann F, Corbett M, O'Sullivan D, et al. Phenotype-driven molecular autopsy for sudden cardiac death[J]. Clin Genet, 2017, 91(1): 22-29. PMID: 27000522. DOI: 10.1111/cge.12778. 24 Zhang L, Cheng X, Chen J, et al. Left bundle pacing for left bundle branch block and intermittent third-degree atrioventricular block in a MYH7 mutation-related hypertrophic cardiomyopathy with restrictive phenotype in a child[J]. Front Pediatr, 2020, 8: 312. PMID: 32612965. PMCID: PMC7308432. DOI: 10.3389/fped.2020.00312. 25 Mathew J, Zahavich L, Lafreniere-Roula M, et al. Utility of genetics for risk stratification in pediatric hypertrophic cardiomyopathy[J]. Clin Genet, 2018, 93(2): 310-319. PMID: 29053178. DOI: 10.1111/cge.13157. 26 Atemin S, Todorov T, Maver A, et al. MYH7-related disorders in two Bulgarian families: novel variants in the same region associated with different clinical manifestation and disease penetrance[J]. Neuromuscul Disord, 2021, 31(7): 633-641. PMID: 34053846. DOI: 10.1016/j.nmd.2021.04.004. 27 Bollen IAE, van der Velden J. The contribution of mutations in MYH7 to the onset of cardiomyopathy[J]. Neth Heart J, 2017, 25(12): 653-654. PMID: 29052809. PMCID: PMC5691819. DOI: 10.1007/s12471-017-1045-5. 28 Norrish G, Kaski JP. The risk of sudden death in children with hypertrophic cardiomyopathy[J]. Heart Fail Clin, 2022, 18(1): 9-18. PMID: 34776087. DOI: 10.1016/j.hfc.2021.07.012. 29 Girolami F, Passantino S, Verrillo F, et al. The influence of genotype on the phenotype, clinical course, and risk of adverse events in children with hypertrophic cardiomyopathy[J]. Heart Fail Clin, 2022, 18(1): 1-8. PMID: 34776071. DOI: 10.1016/j.hfc.2021.07.013. 30 Dainis A, Zaleta-Rivera K, Ribeiro A, et al. Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes[J]. Physiol Genomics, 2020, 52(7): 293-303. PMID: 32567507. PMCID: PMC7468691. DOI: 10.1152/physiolgenomics.00021.2020.