In recent years, the number of premature births worldwide has been increasing, and their long-term prognoses, particularly the cardiovascular outcomes of preterm individuals in adulthood, have become a growing concern. Adults who were born prematurely are at a higher risk for cardiovascular diseases, which may be related to changes in cardiovascular structure, renal structure alterations, changes in body composition, and overactivation of the hypothalamic-pituitary-adrenal axis. To improve the outcomes for preterm individuals, long-term follow-up monitoring and effective prevention and treatment measures are necessary. This article aims to review the relevant literature, summarize the risks and mechanisms of hypertension during childhood and adulthood in those born prematurely, and enhance awareness and understanding of the risk of hypertension in adults who were born prematurely.
DU Yue, WANG Ya-Juan.
The association between preterm birth and hypertension[J]. Chinese Journal of Contemporary Pediatrics. 2024, 26(8): 871-878 https://doi.org/10.7499/j.issn.1008-8830.2312129
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Chawanpaiboon S, Vogel JP, Moller AB, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis[J]. Lancet Glob Health, 2019, 7(1): e37-e46. PMID: 30389451. PMCID: PMC6293055. DOI: 10.1016/S2214-109X(18)30451-0. 2 Crump C, Winkleby MA, Sundquist J, et al. Prevalence of survival without major comorbidities among adults born prematurely[J]. JAMA, 2019, 322(16): 1580-1588. PMID: 31638681. PMCID: PMC6806441. DOI: 10.1001/jama.2019.15040. 3 Crump C. An overview of adult health outcomes after preterm birth[J]. Early Hum Dev, 2020, 150: 105187. PMID: 32948365. PMCID: PMC7480736. DOI: 10.1016/j.earlhumdev.2020.105187. 4 Crump C, Sundquist J, Winkleby MA, et al. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study[J]. Lancet Child Adolesc Health, 2019, 3(6): 408-417. PMID: 30956154. PMCID: PMC6691360. DOI: 10.1016/S2352-4642(19)30108-7. 5 Crump C, Sundquist J, Sundquist K. Risk of hypertension into adulthood in persons born prematurely: a national cohort study[J]. Eur Heart J, 2020, 41(16): 1542-1550. PMID: 31872206. PMCID: PMC8453271. DOI: 10.1093/eurheartj/ehz904. 6 Sulyok E, Farkas B, Bodis J. Pathomechanisms of prenatally programmed adult diseases[J]. Antioxidants (Basel), 2023, 12(7): 1354. PMID: 37507894. PMCID: PMC10376205. DOI: 10.3390/antiox12071354. 7 Jebasingh F, Thomas N. Barker hypothesis and hypertension[J]. Front Public Health, 2022, 9: 767545. PMID: 35127619. PMCID: PMC8814110. DOI: 10.3389/fpubh.2021.767545. 8 Jańczewska I, Wierzba J, Jańczewska A, et al. Prematurity and low birth weight and their impact on childhood growth patterns and the risk of long-term cardiovascular sequelae[J]. Children (Basel), 2023, 10(10): 1599. PMID: 37892262. PMCID: PMC10605160. DOI: 10.3390/children10101599. 9 Mohamed A, Marciniak M, Williamson W, et al. Association of systolic blood pressure elevation with disproportionate left ventricular remodeling in very preterm-born young adults: the preterm heart and elevated blood pressure[J]. JAMA Cardiol, 2021, 6(7): 821-829. PMID: 33978675. PMCID: PMC8117059. DOI: 10.1001/jamacardio.2021.0961. 10 Goss KN, Haraldsdottir K, Beshish AG, et al. Association between preterm birth and arrested cardiac growth in adolescents and young adults[J]. JAMA Cardiol, 2020, 5(8): 910-919. PMID: 32432648. PMCID: PMC7240643. DOI: 10.1001/jamacardio.2020.1511. 11 Brathwaite KE, Levy RV, Sarathy H, et al. Reduced kidney function and hypertension in adolescents with low birth weight, NHANES 1999-2016[J]. Pediatr Nephrol, 2023, 38(9): 3071-3082. PMID: 37052695. DOI: 10.1007/s00467-023-05958-2. 12 Casirati A, Somaschini A, Perrone M, et al. Preterm birth and metabolic implications on later life: a narrative review focused on body composition[J]. Front Nutr, 2022, 9: 978271. PMID: 36185669. PMCID: PMC9521164. DOI: 10.3389/fnut.2022.978271. 13 Casirati A, Somaschini A, Somaschini M. Decoding the association between body composition in preterm birth and hypertension in childhood[J]. JAMA Pediatr, 2023, 177(11): 1238-1239. PMID: 37695618. DOI: 10.1001/jamapediatrics.2023.3516. 14 Finken MJJ, van der Voorn B, Hollanders JJ, et al. Programming of the hypothalamus-pituitary-adrenal axis by very preterm birth[J]. Ann Nutr Metab, 2017, 70(3): 170-174. PMID: 28301846. PMCID: PMC5516415. DOI: 10.1159/000456040. 15 Crump C, Winkleby MA, Sundquist K, et al. Risk of hypertension among young adults who were born preterm: a Swedish national study of 636,000 births[J]. Am J Epidemiol, 2011, 173(7): 797-803. PMID: 21320866. PMCID: PMC3105282. DOI: 10.1093/aje/kwq440. 16 Markopoulou P, Papanikolaou E, Analytis A, et al. Preterm birth as a risk factor for metabolic syndrome and cardiovascular disease in adult life: a systematic review and meta-analysis[J]. J Pediatr, 2019, 210: 69-80.e5. PMID: 30992219. DOI: 10.1016/j.jpeds.2019.02.041. 17 Hochmayr C, Ndayisaba JP, Gande N, et al. Cardiovascular health profiles in adolescents being born term or preterm: results from the EVA-Tyrol study[J]. BMC Cardiovasc Disord, 2023, 23(1): 371. PMID: 37488472. PMCID: PMC10367422. DOI: 10.1186/s12872-023-03360-2. 18 Rodríguez-López M, Sepúlveda-Martínez á, Bernardino G, et al. Cardiometabolic sex differences in adults born small for gestational age[J]. Front Cardiovasc Med, 2023, 10: 1223928. PMID: 37953765. PMCID: PMC10634502. DOI: 10.3389/fcvm.2023.1223928. 19 Haikerwal A, Doyle LW, Cheung MM, et al. High blood pressure in young adult survivors born extremely preterm or extremely low birthweight in the post surfactant era[J]. Hypertension, 2020, 75(1): 211-217. PMID: 31735082. DOI: 10.1161/HYPERTENSIONAHA.119.13780. 20 辛鹏, 江国虹, 郑文龙, 等. 出生体重对成年期慢性病患病风险及血尿酸的影响研究[J]. 中华流行病学杂志, 2021, 42(7): 1213-1217. PMID: 34814533. DOI: 10.3760/cma.j.cn112338-20200831-01112. 21 杜博文, 王鉴, 孙锟. 早产儿血压特点及早产儿高血压风险增高机制的研究进展[J]. 中华儿科杂志, 2020, 58(2): 155-158. PMID: 32102157. DOI: 10.3760/cma.j.issn.0578-1310.2020.02.019. 22 Mohlkert LA, Hallberg J, Broberg O, et al. The preterm heart in childhood: left ventricular structure, geometry, and function assessed by echocardiography in 6-year-old survivors of periviable births[J]. J Am Heart Assoc, 2018, 7(2): e007742. PMID: 29353231. PMCID: PMC5850168. DOI: 10.1161/JAHA.117.007742. 23 Schuermans A, Lewandowski AJ. Understanding the preterm human heart: what do we know so far?[J]. Anat Rec (Hoboken), 2022, 305(9): 2099-2112. PMID: 35090100. PMCID: PMC9542725. DOI: 10.1002/ar.24875. 24 Kumar VHS. Cardiovascular morbidities in adults born preterm: getting to the heart of the matter![J]. Children (Basel), 2022, 9(12): 1843. PMID: 36553286. PMCID: PMC9777245. DOI: 10.3390/children9121843. 25 Chehade H, Simeoni U, Guignard JP, et al. Preterm birth: long term cardiovascular and renal consequences[J]. Curr Pediatr Rev, 2018, 14(4): 219-226. PMID: 30101715. PMCID: PMC6416185. DOI: 10.2174/1573396314666180813121652. 26 Flahault A, Oliveira Fernandes R, De Meulemeester J, et al. Arterial structure and stiffness are altered in young adults born preterm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(10): 2548-2556. PMID: 32847389. DOI: 10.1161/ATVBAHA.120.315099. 27 Chainoglou A, Sarafidis K, Chrysaidou K, et al. Arterial stiffness and nocturnal hypertension in preterm children and adolescents[J]. J Hypertens, 2022, 40(9): 1751-1757. PMID: 35881434. DOI: 10.1097/HJH.0000000000003209. 28 Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension[J]. Lancet, 1997, 350(9082): 953-955. PMID: 9314885. DOI: 10.1016/s0140-6736(96)10508-0. 29 Karatza AA, Dimitriou G. Preeclampsia emerging as a novel risk factor for cardiovascular disease in the offspring[J]. Curr Pediatr Rev, 2020, 16(3): 194-199. PMID: 31884930. PMCID: PMC8193805. DOI: 10.2174/1573396316666191224092405. 30 Fie? A, Gi?ler S, Fauer A, et al. Short report on retinal vessel metrics and arterial blood pressure in adult individuals born preterm with and without retinopathy of prematurity: results from the gutenberg prematurity eye study[J]. Acta Ophthalmol, 2022, 100(8): e1769-e1770. PMID: 35338589. DOI: 10.1111/aos.15132. 31 Xue CC, Li C, Hu JF, et al. Retinal vessel caliber and tortuosity and prediction of 5-year incidence of hypertension[J]. J Hypertens, 2023, 41(5): 830-837. PMID: 36883461. DOI: 10.1097/HJH.0000000000003406. 32 Feuer DS, Handberg EM, Mehrad B, et al. Microvascular dysfunction as a systemic disease: a review of the evidence[J]. Am J Med, 2022, 135(9): 1059-1068. PMID: 35472396. PMCID: PMC9427712. DOI: 10.1016/j.amjmed.2022.04.006. 33 Vicaut E. Hypertension and the microcirculation[J]. Arch Mal Coeur Vaiss, 2003, 96(9): 893-903. PMID: 14571644. 34 Kramer AC, Jansson T, Bale TL, et al. Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism[J]. Development, 2023, 150(20): dev202088. PMID: 37831056. PMCID: PMC10617615. DOI: 10.1242/dev.202088. 35 Frost AL, Suriano K, Aye CYL, et al. The immediate and long-term impact of preeclampsia on offspring vascular and cardiac physiology in the preterm infant[J]. Front Pediatr, 2021, 9: 625726. PMID: 34136436. PMCID: PMC8200529. DOI: 10.3389/fped.2021.625726. 36 Morales-Rubio RA, Alvarado-Cruz I, Manzano-León N, et al. In utero exposure to ultrafine particles promotes placental stress-induced programming of renin-angiotensin system-related elements in the offspring results in altered blood pressure in adult mice[J]. Part Fibre Toxicol, 2019, 16(1): 7. PMID: 30691489. PMCID: PMC6350404. DOI: 10.1186/s12989-019-0289-1. 37 Alsnes IV, Vatten LJ, Fraser A, et al. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (Nord-Tr?ndelag health study) in Norway[J]. Hypertension, 2017, 69(4): 591-598. PMID: 28223467. DOI: 10.1161/HYPERTENSIONAHA.116.08414. 38 Yart L, Roset Bahmanyar E, Cohen M, et al. Role of the uteroplacental renin-angiotensin system in placental development and function, and its implication in the preeclampsia pathogenesis[J]. Biomedicines, 2021, 9(10): 1332. PMID: 34680449. PMCID: PMC8533592. DOI: 10.3390/biomedicines9101332. 39 Vaka R, Deer E, LaMarca B. Is mitochondrial oxidative stress a viable therapeutic target in preeclampsia?[J]. Antioxidants (Basel), 2022, 11(2): 210. PMID: 35204094. PMCID: PMC8868187. DOI: 10.3390/antiox11020210. 40 Lewandowski AJ, Levy PT, Bates ML, et al. Impact of the vulnerable preterm heart and circulation on adult cardiovascular disease risk[J]. Hypertension, 2020, 76(4): 1028-1037. PMID: 32816574. PMCID: PMC7480939. DOI: 10.1161/HYPERTENSIONAHA.120.15574. 41 Behnke J, Dippel CM, Choi Y, et al. Oxygen toxicity to the immature lung—part II: the unmet clinical need for causal therapy[J]. Int J Mol Sci, 2021, 22(19): 10694. PMID: 34639034. PMCID: PMC8508961. DOI: 10.3390/ijms221910694. 42 Higashi Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease[J]. Antioxidants (Basel), 2022, 11(10): 1958. PMID: 36290681. PMCID: PMC9598825. DOI: 10.3390/antiox11101958. 43 Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, et al. Implication of oxidative stress in fetal programming of cardiovascular disease[J]. Front Physiol, 2018, 9: 602. PMID: 29875698. PMCID: PMC5974054. DOI: 10.3389/fphys.2018.00602. 44 Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function[J]. Circulation, 2013, 127(2): 197-206. PMID: 23224059. DOI: 10.1161/CIRCULATIONAHA.112.126920. 45 Schuermans A, den Harink T, Raman B, et al. Differing impact of preterm birth on the right and left atria in adulthood[J]. J Am Heart Assoc, 2022, 11(23): e027305. PMID: 36453643. PMCID: PMC9851437. DOI: 10.1161/JAHA.122.027305. 46 Poletto Bonetto JH, Fernandes RO, Dartora DR, et al. Impact of early life AT1 blockade on adult cardiac morpho-functional changes and the renin-angiotensin system in a model of neonatal high oxygen-induced cardiomyopathy[J]. Eur J Pharmacol, 2019, 860: 172585. PMID: 31376367. DOI: 10.1016/j.ejphar.2019.172585. 47 Chainoglou A, Chrysaidou K, Kotsis V, et al. Preterm birth, kidney function and cardiovascular disease in children and adolescents[J]. Children (Basel), 2022, 9(8): 1130. PMID: 36010021. PMCID: PMC9406522. DOI: 10.3390/children9081130. 48 Grillo MA, Mariani G, Ferraris JR. Prematurity and low birth weight in neonates as a risk factor for obesity, hypertension, and chronic kidney disease in pediatric and adult age[J]. Front Med (Lausanne), 2022, 8: 769734. PMID: 35186967. PMCID: PMC8850406. DOI: 10.3389/fmed.2021.769734. 49 Sanders AP, Svensson K, Gennings C, et al. Prenatal lead exposure modifies the effect of shorter gestation on increased blood pressure in children[J]. Environ Int, 2018, 120: 464-471. PMID: 30145310. PMCID: PMC6354251. DOI: 10.1016/j.envint.2018.08.038. 50 Brenner BM, Anderson S. The interrelationships among filtration surface area, blood pressure, and chronic renal disease[J]. J Cardiovasc Pharmacol, 1992, 19 (Suppl 6): S1-S7. PMID: 1382155. DOI: 10.1097/00005344-199219006-00002. 51 Luyckx VA, Perico N, Somaschini M, et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the low birth weight and nephron number working group[J]. Lancet, 2017, 390(10092): 424-428. PMID: 28284520. PMCID: PMC5884413. DOI: 10.1016/S0140-6736(17)30576-7. 52 Sulyok E, Németh M, Tényi I, et al. Postnatal development of renin-angiotensin-aldosterone system, RAAS, in relation to electrolyte balance in premature infants[J]. Pediatr Res, 1979, 13(7): 817-820. PMID: 481953. DOI: 10.1203/00006450-197907000-00005. 53 Vida G, Sulyok E, Lakatos O, et al. Plasma levels of asymmetric dimethylarginine in premature neonates: its possible involvement in developmental programming of chronic diseases[J]. Acta Paediatr, 2009, 98(3): 437-441. PMID: 19006524. DOI: 10.1111/j.1651-2227.2008.01115.x. 54 Ohuma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis[J]. Lancet, 2023, 402(10409): 1261-1271. PMID: 37805217. DOI: 10.1016/S0140-6736(23)00878-4. 55 Luyckx VA, Brenner BM. Clinical consequences of developmental programming of low nephron number[J]. Anat Rec (Hoboken), 2020, 303(10): 2613-2631. PMID: 31587509. DOI: 10.1002/ar.24270. 56 White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies[J]. Am J Kidney Dis, 2009, 54(2): 248-261. PMID: 19339091. DOI: 10.1053/j.ajkd.2008.12.042. 57 Paquette K, Fernandes RO, Xie LF, et al. Kidney size, renal function, ang (angiotensin) peptides, and blood pressure in young adults born preterm[J]. Hypertension, 2018, 72(4): 918-928. PMID: 30354721. DOI: 10.1161/HYPERTENSIONAHA.118.11397. 58 South AM, Nixon PA, Chappell MC, et al. Renal function and blood pressure are altered in adolescents born preterm[J]. Pediatr Nephrol, 2019, 34(1): 137-144. PMID: 30112655. PMCID: PMC6237649. DOI: 10.1007/s00467-018-4050-z. 59 Dagan A, Gattineni J, Cook V, et al. Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292(3): R1230-R1235. PMID: 17095646. PMCID: PMC4096979. DOI: 10.1152/ajpregu.00669.2006. 60 Delgado MM, Rohatgi R, Khan S, et al. Sodium and potassium clearances by the maturing kidney: clinical-molecular correlates[J]. Pediatr Nephrol, 2003, 18(8): 759-767. PMID: 12811646. DOI: 10.1007/s00467-003-1178-1. 61 Kaze FF, Nguefack S, Asong CM, et al. Birth weight and renal markers in children aged 5-10 years in Cameroon: a cross-sectional study[J]. BMC Nephrol, 2020, 21(1): 464. PMID: 33160323. PMCID: PMC7648942. DOI: 10.1186/s12882-020-02133-9. 62 Tian Q, He C, Wang Z, et al. Relationship between serum uric acid and estimated glomerular filtration rate in adolescents aged 12-19 years with different body mass indices: a cross-sectional study[J]. Front Endocrinol (Lausanne), 2023, 14: 1138513. PMID: 37564990. PMCID: PMC10410468. DOI: 10.3389/fendo.2023.1138513. 63 Nugent JT, Lu Y, Deng Y, et al. Effect measure modification by birth weight on the association between overweight or obesity and hypertension in children and adolescents[J]. JAMA Pediatr, 2023, 177(7): 735-737. PMID: 37155182. PMCID: PMC10167596. DOI: 10.1001/jamapediatrics.2023.0799. 64 Gallagher D, Andres A, Fields DA, et al. Body composition measurements from birth through 5 years: challenges, gaps, and existing & emerging technologies—a National Institutes of Health workshop[J]. Obes Rev, 2020, 21(8): e13033. PMID: 32314544. PMCID: PMC7875319. DOI: 10.1111/obr.13033. 65 Joisten C, Wessely S, Prinz N, et al. BMI Z-score (SDS) versus calculated body fat percentage: association with cardiometabolic risk factors in obese children and adolescents[J]. Ann Nutr Metab, 2024, 80(1): 29-36. PMID: 38128491. PMCID: PMC10857797. DOI: 10.1159/000535216. 66 Johnson MJ, Wootton SA, Leaf AA, et al. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis[J]. Pediatrics, 2012, 130(3): e640-e649. PMID: 22891222. DOI: 10.1542/peds.2011-3379. 67 Roggero P, Giannì ML, Amato O, et al. Is term newborn body composition being achieved postnatally in preterm infants?[J]. Early Hum Dev, 2009, 85(6): 349-352. PMID: 19162413. DOI: 10.1016/j.earlhumdev.2008.12.011. 68 Giannì ML, Roggero P, Piemontese P, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers[J]. Acta Paediatr, 2015, 104(3): e119-e123. PMID: 25382273. DOI: 10.1111/apa.12856. 69 Yumani DFJ, Lafeber HN, van Weissenbruch MM. IGF-I, growth, and body composition in preterm infants up to term equivalent age[J]. J Endocr Soc, 2021, 5(7): bvab089. PMID: 34159288. PMCID: PMC8212689. DOI: 10.1210/jendso/bvab089. 70 Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition[J]. Proc Nutr Soc, 2007, 66(3): 423-434. PMID: 17637095. DOI: 10.1017/S0029665107005691. 71 Cheong JLY, Olsen JE, Konstan T, et al. Growth from infancy to adulthood and associations with cardiometabolic health in individuals born extremely preterm[J]. Lancet Reg Health West Pac, 2023, 34: 100717. PMID: 37283973. PMCID: PMC10240366. DOI: 10.1016/j.lanwpc.2023.100717. 72 Burrows R, Correa-Burrows P, Reyes M, et al. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: a cross-sectional study in a Chilean birth cohort[J]. Pediatr Diabetes, 2017, 18(8): 895-902. PMID: 28145023. PMCID: PMC5538898. DOI: 10.1111/pedi.12505. 73 Pfister KM, Zhang L, Miller NC, et al. Early body composition changes are associated with neurodevelopmental and metabolic outcomes at 4 years of age in very preterm infants[J]. Pediatr Res, 2018, 84(5): 713-718. PMID: 30188501. PMCID: PMC6294700. DOI: 10.1038/s41390-018-0158-x. 74 Gao LW, Huang YW, Cheng H, et al. Prevalence of hypertension and its associations with body composition across Chinese and American children and adolescents[J]. World J Pediatr, 2024, 20(4): 392-403. PMID: 37442884. DOI: 10.1007/s12519-023-00740-8. 75 Finken MJ, van der Voorn B, Heijboer AC, et al. Glucocorticoid programming in very preterm birth[J]. Horm Res Paediatr, 2016, 85(4): 221-231. PMID: 26943327. DOI: 10.1159/000443734. 76 Gohlke B, Wudy SA, Stutte S, et al. Increased steroid excretion in children with extremely low birth weight at a median age of 9.8 years[J]. Horm Res Paediatr, 2015, 84(5): 331-337. PMID: 26440939. DOI: 10.1159/000441031. 77 Brummelte S, Chau CM, Cepeda IL, et al. Cortisol levels in former preterm children at school age are predicted by neonatal procedural pain-related stress[J]. Psychoneuroendocrinology, 2015, 51: 151-163. PMID: 25313535. PMCID: PMC4268136. DOI: 10.1016/j.psyneuen.2014.09.018.