目的 探讨活性氧簇(reactive oxygen species, ROS)/沉默信息调节因子1(silent information regulator 1, SIRT1)对高氧致BEAS-2B细胞线粒体损伤的影响。 方法 实验分为三部分:(1)细胞分为高氧0 h(H0)组、H6组、H12组、H24组、H48组。(2)细胞分为对照组、H48组、高氧48 h+SIRT1抑制剂(H48+EX 527)组和高氧48 h+SIRT1激动剂(H48+SRT1720)组。(3)细胞分为对照组、高氧48 h+乙酰半胱氨酸(H48+NAC)组和H48组。采用活性氧试剂盒检测ROS水平,Western blot法检测SIRT1和线粒体相关蛋白表达水平,免疫荧光染色法检测线粒体相关蛋白表达,透射电镜检测线粒体形态。 结果 (1)与H0组相比,H6组、H12组、H24组和H48组ROS荧光强度增加(P<0.05),H48组SIRT1和线粒体相关蛋白表达水平降低(P<0.05),H24组和H48组线粒体相关蛋白荧光强度降低(P<0.05)。(2)与H48组相比,H48+SRT1720组线粒体相关蛋白表达水平升高,线粒体平均长宽比增加(P<0.05);H48+EX 527组线粒体平均面积减少(P<0.05)。(3)与H48组相比,H48+NAC组ROS荧光强度降低,SIRT1和线粒体相关蛋白表达水平升高,线粒体平均面积和平均长宽比增加(P<0.05)。 结论 ROS/SIRT1轴参与了高氧诱导的BEAS-2B细胞线粒体损伤。
Abstract
Objective To investigate the effect of reactive oxygen species (ROS)/silent information regulator 1 (SIRT1) on hyperoxia-induced mitochondrial injury in BEAS-2B cells. Methods The experiment was divided into three parts. In the first part, cells were divided into H0, H6, H12, H24, and H48 groups. In the second part, cells were divided into control group, H48 group, H48 hyperoxia+SIRT1 inhibitor group (H48+EX 527 group), and H48 hyperoxia+SIRT1 agonist group (H48+SRT1720 group). In the third part, cells were divided into control group, 48-hour hyperoxia+N-acetylcysteine group (H48+NAC group), and H48 group. The ROS kit was used to measure the level of ROS. Western blot and immunofluorescent staining were used to measure the expression levels of SIRT1 and mitochondria-related proteins. Transmission electron microscopy was used to observe the morphology of mitochondria. Results Compared with the H0 group, the H6, H12, H24, and H48 groups had a significantly increased fluorescence intensity of ROS (P<0.05), the H48 group had significant reductions in the expression levels of SIRT1 protein and mitochondria-related proteins (P<0.05), and the H24 and H48 groups had a significant reduction in the fluorescence intensity of mitochondria-related proteins (P<0.05). Compared with the H48 group, the H48+SRT1720 group had significant increases in the expression levels of mitochondria-related proteins and the mitochondrial aspect ratio (P<0.05), and the H48+EX 527 group had a significant reduction in the mitochondrial area (P<0.05). Compared with the H48 group, the H48+NAC group had a significantly decreased fluorescence intensity of ROS (P<0.05) and significantly increased levels of SIRT1 protein, mitochondria-related proteins, mitochondrial area, and mitochondrial aspect ratio (P<0.05). Conclusions The ROS/SIRT1 axis is involved in hyperoxia-induced mitochondrial injury in BEAS-2B cells.
关键词
线粒体损伤 /
高氧 /
活性氧簇 /
沉默信息调节因子1 /
人支气管上皮细胞
Key words
Mitochondrial injury /
Hyperoxia /
Reactive oxygen species /
Silent information regulator 1 /
Human bronchial epithelial cell
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
1 Schmidt AR, Ramamoorthy C. Bronchopulmonary dysplasia[J]. Paediatr Anaesth, 2022, 32(2): 174-180. PMID: 34877749. DOI: 10.1111/pan.14365.
2 Shukla VV, Ambalavanan N. Recent advances in bronchopulmonary dysplasia[J]. Indian J Pediatr, 2021, 88(7): 690-695. PMID: 34018135. DOI: 10.1007/s12098-021-03766-w.
3 Homan TD, Nayak RP. Short- and long-term complications of bronchopulmonary dysplasia[J]. Respir Care, 2021, 66(10): 1618-1629. PMID: 34552015. DOI: 10.4187/respcare.08401.
4 Hwang JS, Rehan VK. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment[J]. Lung, 2018, 196(2): 129-138. PMID: 29374791. PMCID: PMC5856637. DOI: 10.1007/s00408-018-0084-z.
5 Wang J, Dong W. Oxidative stress and bronchopulmonary dysplasia[J]. Gene, 2018, 678: 177-183. PMID: 30098433. DOI: 10.1016/j.gene.2018.08.031.
6 Jhaveri Sanghvi U, Wright CJ, Hernandez TL. Pulmonary resilience: moderating the association between oxygen exposure and pulmonary outcomes in extremely preterm newborns[J]. Neonatology, 2022, 119(4): 433-442. PMID: 35551136. PMCID: PMC9296587. DOI: 10.1159/000524438.
7 Simon-Szabo Z, Fogarasi E, Nemes-Nagy E, et al. Oxidative stress and peripartum outcomes (review)[J]. Exp Ther Med, 2021, 22(1): 771. PMID: 34055070. PMCID: PMC8145513. DOI: 10.3892/etm.2021.10203.
8 Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: current progress and future directions[J]. Paediatr Respir Rev, 2020, 34: 37-45. PMID: 31060947. PMCID: PMC6790157. DOI: 10.1016/j.prrv.2019.04.001.
9 Yang K, Yang M, Shen Y, et al. Resveratrol attenuates hyperoxia lung injury in neonatal rats by activating SIRT1/PGC-1α signaling pathway[J]. Am J Perinatol, 2024, 41(8): 1039-1049. PMID: 35240708. DOI: 10.1055/a-1787-3396.
10 Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6): e21620. PMID: 34048084. PMCID: PMC8415099. DOI: 10.1096/fj.202100067R.
11 Yang Y, Liu Y, Wang Y, et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol, 2022, 13: 831168. PMID: 35359990. PMCID: PMC8962665. DOI: 10.3389/fimmu.2022.831168.
12 Yang X, Dong WB, Lei XP, et al. Resveratrol suppresses hyperoxia-induced nucleocytoplasmic shuttling of SIRT1 and ROS production in PBMC from preterm infants in vitro[J]. J Matern Fetal Neonatal Med, 2018, 31(9): 1142-1150. PMID: 28420272. DOI: 10.1080/14767058.2017.1311310.
13 汪璠, 雷小平, 康兰, 等. 高氧抑制SIRT1和PGC-1α表达引起肺泡上皮细胞线粒体功能障碍[J]. 细胞与分子免疫学杂志, 2020, 36(9): 788-793. DOI: 10.13423/j.cnki.cjcmi.009064.
14 Kimble A, Robbins ME, Perez M. Pathogenesis of bronchopulmonary dysplasia: role of oxidative stress from 'omics' studies[J]. Antioxidants (Basel), 2022, 11(12): 2380. PMID: 36552588. PMCID: PMC9774798. DOI: 10.3390/antiox11122380.
15 Nardiello C, Mi?íková I, Silva DM, et al. Standardisation of oxygen exposure in the development of mouse models for bronchopulmonary dysplasia[J]. Dis Model Mech, 2017, 10(2): 185-196. PMID: 28067624. PMCID: PMC5312005. DOI: 10.1242/dmm.027086.
16 Greco F, Wiegert S, Baumann P, et al. Hyperoxia-induced lung structure-function relation, vessel rarefaction, and cardiac hypertrophy in an infant rat model[J]. J Transl Med, 2019, 17(1): 91. PMID: 30885241. PMCID: PMC6423834. DOI: 10.1186/s12967-019-1843-1.
17 Demirtas MS, Kilicbay F, Erdal H, et al. Oxidative stress levels and dynamic thiol-disulfide balance in preterm newborns with bronchopulmonary dysplasia[J]. Lab Med, 2023, 54(6): 587-592. PMID: 36896684. DOI: 10.1093/labmed/lmad010.
18 Yang M, Shen Y, Zhao S, et al. Protective effect of resveratrol on mitochondrial biogenesis during hyperoxia-induced brain injury in neonatal pups[J]. BMC Neurosci, 2023, 24(1): 27. PMID: 37098490. PMCID: PMC10127954. DOI: 10.1186/s12868-023-00797-1.
19 Garcia D, Carr JF, Chan F, et al. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice[J]. Pediatr Res, 2021, 90(1): 58-65. PMID: 33144707. PMCID: PMC8089115. DOI: 10.1038/s41390-020-01224-5.
20 Kandasamy J, Olave N, Ballinger SW, et al. Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants[J]. Am J Respir Crit Care Med, 2017, 196(8): 1040-1049. PMID: 28485984. PMCID: PMC5649986. DOI: 10.1164/rccm.201702-0353OC.
21 Ma C, Beyer AM, Durand M, et al. Hyperoxia causes mitochondrial fragmentation in pulmonary endothelial cells by increasing expression of pro-fission proteins[J]. Arterioscler Thromb Vasc Biol, 2018, 38(3): 622-635. PMID: 29419407. PMCID: PMC5823793. DOI: 10.1161/ATVBAHA.117.310605.
22 Dai Y, Yu B, Ai D, et al. Mitochondrial fission-mediated lung development in newborn rats with hyperoxia-induced bronchopulmonary dysplasia with pulmonary hypertension[J]. Front Pediatr, 2020, 8: 619853. PMID: 33634054. PMCID: PMC7902063. DOI: 10.3389/fped.2020.619853.
23 Chen C, Zhou M, Ge Y, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020, 187: 111215. PMID: 32084459. DOI: 10.1016/j.mad.2020.111215.
24 Zhu X, Wang F, Lei X, et al. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction[J]. Exp Biol Med (Maywood), 2021, 246(5): 596-606. PMID: 33215523. PMCID: PMC7934147. DOI: 10.1177/1535370220975106.
25 Hong CY, Zhang HD, Liu XY, et al. Attenuation of hyperoxic acute lung injury by Lycium barbarum polysaccharide via inhibiting NLRP3 inflammasome[J]. Arch Pharm Res, 2019, 42(10): 902-908. PMID: 31388826. DOI: 10.1007/s12272-019-01175-4.
26 Liang Z, Yue H, Xu C, et al. Protectin DX relieve hyperoxia-induced lung injury by protecting pulmonary endothelial glycocalyx[J]. J Inflamm Res, 2023, 16: 421-431. PMID: 36755970. PMCID: PMC9900492. DOI: 10.2147/JIR.S391765.
27 Yang K, Dong W. SIRT1-related signaling pathways and their association with bronchopulmonary dysplasia[J]. Front Med (Lausanne), 2021, 8: 595634. PMID: 33693011. PMCID: PMC7937618. DOI: 10.3389/fmed.2021.595634.
28 Yang J, Li H, Zhang C, et al. Indoxyl sulfate reduces Ito,f by activating ROS/MAPK and NF-κB signaling pathways[J]. JCI insight, 2022, 7(3): e145475. PMID: 35132967. PMCID: PMC8855797. DOI: 10.1172/jci.insight.145475.
基金
四川省科技计划重点研发项目(2022YFS0062)。