Abstract Vitamin D is an important steroid hormone, which has a wide biological effect and is the protective factor against cardiovascular disease and other diseases. At present, the etiology and pathogenesis of Kawasaki disease (KD) remain unknown, but recent studies have shown that vitamin D insufficiency or deficiency is associated with KD. Vitamin D insufficiency or deficiency may affect KD via its influence on inflammatory response, adipokine, endothelial function, platelet function, and DNA methylation and increase the risk of coronary artery lesions. This article reviews the research advances in the association between vitamin D and KD and possible mechanisms of action.
YANG Xue,DONG Xiang-Yu. Research advances in association between vitamin D and Kawasaki disease and related mechanisms of action[J]. CJCP, 2016, 18(12): 1319-1323.
YANG Xue,DONG Xiang-Yu. Research advances in association between vitamin D and Kawasaki disease and related mechanisms of action[J]. CJCP, 2016, 18(12): 1319-1323.
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012:from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3):239-245.
[2]
Kuroda M, Sakaue H. Role of vitamin D and calcium in obesity and type 2 diabetes[J]. Clin Calcium, 2016, 26(3):349-354.
[3]
Aguirre M, Manzano M, Salas Y, et al. Vitamin D deficiency in patients admitted to the general ward with breast, lung, and colorectal cancer in Buenos Aires, Argentina[J]. Arch Osteoporos, 2016, 11:4.
[4]
Desai CK, Huang J, Lokhandwala A, et al. The role of vitamin supplementation in the prevention of cardiovascular disease events[J]. Clin Cardiol, 2014, 37(9):576-581.
[5]
Li YC, Chen Y, Liu W, et al. MicroRNA-mediated mechanism of vitamin D regulation of innate immune response[J]. J Steroid Biochem Mol Biol, 2014, 144 Pt A:81-86.
[6]
Pilon C, Urbanet R, Williams TA, et al. 1α,25-Dihydroxyvitamin D3 inhibits the human H295R cell proliferation by cell cycle arrest:a model for a protective role of vitamin D receptor against adrenocortical cancer[J]. J Steroid Biochem Mol Biol, 2014, 140:26-33.
[7]
Ricciardi CJ, Bae J, Esposito D, et al. 1,25-Dihydroxyvitamin D3/vitamin D receptor suppresses brown adipocyte differentiation and mitochondrial respiration[J]. Eur J Nutr, 2015, 54(6):1001-1012.
[8]
Durk MR, Fan J, Sun H, et al. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine:an intracerebral microdialysis study in conscious rats[J]. Pharm Res, 2015, 32(3):1128-1140.
[9]
Oz F, Cizgici AY, Oflaz H, et al. Impact of vitamin D insufficiency on the epicardial coronary flow velocity and endothelial function[J]. Coron Artery Dis, 2013, 24(5):392-397.
Stagi S, Rigante D, Lepri G, et al. Severe vitamin D deficiency in patients with Kawasaki disease:a potential role in the risk to develop heart vascular abnormalities?[J]. Clin Rheumatol, 2016, 35(7):1865-1872.
[12]
Schoenmakers I, Gousias P, Jones KS, et al. Prediction of winter vitamin D status and requirements in the UK population based on 25(OH) vitamin D half-life and dietary intake data[J]. J Steroid Biochem Mol Biol, 2016. doi:10.1016/j.jsbmb.2016.03.015.[Epub ahead of print].
[13]
Camargo CA Jr, Ganmaa D, Sidbury R, et al. Randomized trial of vitamin D supplementation for winter-related atopic dermatitis in children[J]. J Allergy Clin Immunol, 2014, 134(4):831-835.
Sakata K, Hamaoka K, Ozawa S, et al. Matrix metalloproteinase-9 in vascular lesions and endothelial regulation in Kawasaki disease[J]. Cric J, 2010, 74(8):1670-1675.
[16]
Yin W, Wang X, Ding Y, et al. Expression of nuclear factor-κBp65 in mononuclear cells in Kawasaki disease and its relation to coronary artery lesions[J]. Indian J Pediatr, 2011, 78(11):1378-1382.
[17]
Senzaki H. The pathophysiology of coronary artery aneurysms in Kawasaki disease:role of matrix metalloproteinases[J]. Arch Dis Child, 2006, 91(10):847-851.
[18]
Wang Y, Wang W, Gong F, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease[J]. Arthritis Rheum, 2013, 65(3):805-814.
[19]
Lv YW, Wang J, Sun L, et al. Understanding the pathogenesis of Kawasaki disease by network and pathway analysis[J]. Comput Math Methods Med, 2013, 2013:989307.
[20]
Suzuki Y, Ichiyama T, Ohsaki A, et al. Anti-inflammatory effect of 1alpha,25-dihydroxyvitamin D(3) in human coronary arterial endothelial cells:Implication for the treatment of Kawasaki disease[J]. J Steroid Biochem Mol Biol, 2009, 113(1-2):134-138.
[21]
Kudo K, Hasegawa S, Suzuki Y, et al. 1α,25-Dihydroxyvitamin D(3) inhibits vascular cellular adhesion molecule-1 expression and interleukin-8 production in human coronary arterial endothelial cells[J]. J Steroid Biochem Mol Biol, 2012, 132(3-5):290-294.
[22]
Mittal A, Gupta MD, Meennahalli Palleda G, et al. Relationship of plasma adiponectin levels with acute coronary syndromes and coronary lesion severity in north Indian population[J]. ISRN Cardiol, 2013, 2013:854815.
Ko TM, Kuo HC, Chang JS, et al. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease[J]. Circ Res, 2015, 116(5):876-883.
[25]
Feng S, Yadav SK, Gao F, et al. Plasma levels of monokine induced by interferon-gamma/chemokine (C-X-X motif) ligand 9, thymus and activation-regulated chemokine/chemokine (C-C motif) ligand 17 in children with Kawasaki disease[J]. BMC Pediatr, 2015, 15:109.
[26]
Selvaraj P, Harishankar M, Singh B, et al. Effect of vitamin D3 on chemokine expression in pulmonary tuberculosis[J]. Cytokine, 2012, 60(1):212-219.
[27]
Wang X, Chen Q, Pu H, et al. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice[J]. Lipids Health Dis, 2016, 15:33.
[28]
Stokic E, Kupusinac A, Tomic-Naglic D, et al. Vitamin D and dysfunctional adipose tissue in obesity[J]. Angiology, 2015, 66(7):613-618.
[29]
Walker GE, Ricotti R, Roccio M, et al. Pediatric obesity and vitamin D deficiency:a proteomic approach identifies multimeric adiponectin as a key link between these conditions[J]. PLoS One, 2014, 9(1):e83685.
[30]
Ding YY, Ren Y, Feng X, et al. Correlation between brachial artery flow-mediated dilation and endothelial microparticle levels for identifying endothelial dysfunction in children with Kawasaki disease[J]. Pediatr Res, 2014, 75(3):453-458.
Chen Z, DU ZD, Liu JF, et al. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model[J]. Chin Med J(Engl), 2012, 125(13):2295-2301.
[33]
Chen X, Chen Q, Wang L, et al. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells[J]. Metabolism, 2013, 62(5):743-752.
[34]
Chan YH, Lau KK, Yiu KH, et al. Vascular protective effects of statin-related increase in serum 25-hydroxyvitamin D among high-risk cardiac patients[J]. J Cardiovasc Med (Hagerstown), 2015, 16(1):51-58.
[35]
Martínez-Miguel P, Valdivielso JM, Medrano-Andrés D, et al. The active form of vitamin D, calcitriol, induces a complex dual upregulation of endothelin and nitric oxide in cultured endothelial cells[J]. Am J Physiol Endocrinol Metab, 2014, 307(12):E1085-E1096.
[36]
Reynolds JA, Haque S, Williamson K, et al. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus[J]. Sci Rep, 2016, 6:22341.
[37]
Yahata T, Suzuki C, Yoshioka A, et al. Platelet activation dynamics evaluated using platelet-derived microparticles in Kawasaki disease[J]. Circ J, 2014, 78(1):188-193.
[38]
Laurito M, Stazi A, Delogu AB, et al. Endothelial and platelet function in children with previous Kawasaki disease[J]. Angiology, 2014, 65(8):716-722.
[39]
Silvagno F, De Vivo E, Attanasio A, et al. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes[J]. PLoS One, 2010, 5(1):e8670.
[40]
Stach K, Kälsch AI, Nguyen XD, et al. 1α,25-dihydroxyvitamin D3 attenuates platelet activation and the expression of VCAM-1 and MT1-MMP in human endothelial cells[J]. Cardiology, 2011, 118(2):107-115.
[41]
Cumhur Cure M, Cure E, Yuce S, et al. Mean platelet volume and vitamin D level[J]. Ann Lab Med, 2014, 34(2):98-103.
[42]
Uysal HB, Dağlı B, Akgüllü C, et al. Blood count parameters can predict the severity of coronary artery disease[J]. Korean J Intern Med, 2016, 31(6):1093-1100.
[43]
López-Farré AJ, Modrego J, Azcona L, et al. Nitric oxide from mononuclear cells may be involved in platelet responsiveness to aspirin[J]. Eur J Clin Invest, 2014, 44(5):463-469.
Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease[J]. Nat Genet, 2011, 43(12):1241-1246.
[46]
Kuo HC, Chang JC, Kuo HC, et al. Identification of an association between genomic hypomethylation of FCGR2A and susceptibility to Kawasaki disease and intravenous immunoglobulin resistance by DNA methylation array[J]. Arthritis Rheumatol, 2015, 67(3):828-836.
[47]
Kuo HC, Hsu YW, Wu MS, et al. FCGR2A promoter methylation and risks for intravenous immunoglobulin treatment responses in Kawasaki disease[J]. Mediators Inflamm, 2015, 2015:564625.
[48]
Zhu H, Bhagatwala J, Huang Y, et al. Race/ethnicity-specific association of vitamin D and global DNA methylation:cross-sectional and interventional findings[J]. PLoS One, 2016, 11(4):e0152849.