Abstract Spinal muscular atrophy (SMA) is a common fatal autosomal recessive genetic disorder in childhood, primarily caused by homozygous deletion of the SMN1 gene. Its main characteristics include the degenerative changes in the anterior horn motor neurons of the spinal cord, leading to symmetrical progressive muscle weakness and atrophy of the proximal limbs. However, SMA patients with the same genetic background often exhibit different degrees of disease severity. In addition to the well-established modifier gene SMN2, the effect of other modifier genes on clinical phenotypes should not be overlooked. This paper reviews the latest advancements in the pathogenic and modifier genes of SMA, aiming to provide a deeper understanding of the pathogenic mechanisms and phenotypic differences in SMA, as well as to offer new strategies and targets for treating this condition.
Martí Y, Aponte Ribero V, Batson S, et al. A systematic literature review of the natural history of respiratory, swallowing, feeding, and speech functions in spinal muscular atrophy (SMA)[J]. J Neuromuscul Dis, 2024, 11(5): 889-904. PMID: 38943396. PMCID: PMC11380303. DOI: 10.3233/JND-230248.
Rouzier C, Chaussenot A, Paquis-Flucklinger V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA)[J]. Arch Pediatr, 2020, 27(7S): 7S9-7S14. PMID: 33357600. DOI: 10.1016/S0929-693X(20)30270-0.
Kim JK, Jha NN, Feng Z, et al. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models[J]. J Clin Invest, 2020, 130(3): 1271-1287. PMID: 32039917. PMCID: PMC7269591. DOI: 10.1172/JCI131989.
Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): implications for spinal muscular atrophy phenotype and therapeutics development[J]. Int J Mol Sci, 2021, 22(15): 7896. PMID: 34360669. PMCID: PMC8348669. DOI: 10.3390/ijms22157896.
Dosi C, Masson R. The impact of three SMN2 gene copies on clinical characteristics and effect of disease-modifying treatment in patients with spinal muscular atrophy: a systematic literature review[J]. Front Neurol, 2024, 15: 1308296. PMID: 38487326. PMCID: PMC10937544. DOI: 10.3389/fneur.2024.1308296.
Blaschek A, K?lbel H, Schwartz O, et al. Newborn screening for SMA: can a wait-and-see strategy be responsibly justified in patients with four SMN2 copies?[J]. J Neuromuscul Dis, 2022, 9(5): 597-605. PMID: 35848034. DOI: 10.3233/JND-221510.
Ruhno C, McGovern VL, Avenarius MR, et al. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype[J]. Hum Genet, 2019, 138(3): 241-256. PMID: 30788592. PMCID: PMC6503527. DOI: 10.1007/s00439-019-01983-0.
Hensel N, Detering NT, Walter LM, et al. Resolution of pathogenic R-loops rescues motor neuron degeneration in spinal muscular atrophy[J]. Brain, 2020, 143(1): 2-5. PMID: 31886489. DOI: 10.1093/brain/awz394.
Ting CH, Lin CW, Wen SL, et al. Stat5 constitutive activation rescues defects in spinal muscular atrophy[J]. Hum Mol Genet, 2007, 16(5): 499-514. PMID: 17220171. DOI: 10.1093/hmg/ddl482.
Farooq F, Molina FA, Hadwen J, et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway[J]. J Clin Invest, 2011, 121(8): 3042-3050. PMID: 21785216. PMCID: PMC3148738. DOI: 10.1172/JCI46276.
Medrano S, Monges S, Gravina LP, et al. Genotype-phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina[J]. Eur J Paediatr Neurol, 2016, 20(6): 910-917. PMID: 27510309. DOI: 10.1016/j.ejpn.2016.07.017.
Meyer NH, Dellago H, Tam-Amersdorfer C, et al. Structural fuzziness of the RNA-organizing protein SERF determines a toxic gain-of-interaction[J]. J Mol Biol, 2020, 432(4): 930-951. PMID: 31794729. DOI: 10.1016/j.jmb.2019.11.014.
Yanyan C, Yujin Q, Jinli B, et al. Correlation of PLS3 expression with disease severity in children with spinal muscular atrophy[J]. J Hum Genet, 2014, 59(1): 24-27. PMID: 24172247. DOI: 10.1038/jhg.2013.111.
Hosseinibarkooie S, Peters M, Torres-Benito L, et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype[J]. Am J Hum Genet, 2016, 99(3): 647-665. PMID: 27499521. PMCID: PMC5011078. DOI: 10.1016/j.ajhg.2016.07.014.
Riessland M, Kaczmarek A, Schneider S, et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis[J]. Am J Hum Genet, 2017, 100(2): 297-315. PMID: 28132687. PMCID: PMC5294679. DOI: 10.1016/j.ajhg.2017.01.005.
Abd El Mutaleb ANH, Ibrahim FAR, Megahed FAK, et al. NAIP gene deletion and SMN2 copy number as molecular tools in predicting the severity of spinal muscular atrophy[J]. Biochem Genet, 2024, 62(6): 5051-5072. PMID: 38388850. PMCID: PMC11604826. DOI: 10.1007/s10528-023-10657-6.
He J, Zhang QJ, Lin QF, et al. Molecular analysis of SMN1, SMN2, NAIP, GTF2H2, and H4F5 genes in 157 Chinese patients with spinal muscular atrophy[J]. Gene, 2013, 518(2): 325-329. PMID: 23352792. DOI: 10.1016/j.gene.2012.12.109.
Noguchi Y, Onishi A, Nakamachi Y, et al. Telomeric region of the spinal muscular atrophy locus is susceptible to structural variations[J]. Pediatr Neurol, 2016, 58: 83-89. PMID: 27268759. DOI: 10.1016/j.pediatrneurol.2016.01.019.