基于潜在类别分析的婴儿睡眠模式及其影响因素研究

韦玮, 王惠, 张军

中国当代儿科杂志 ›› 2026, Vol. 28 ›› Issue (1) : 49-55.

PDF(662 KB)
HTML
PDF(662 KB)
HTML
中国当代儿科杂志 ›› 2026, Vol. 28 ›› Issue (1) : 49-55. DOI: 10.7499/j.issn.1008-8830.2506105
论著·临床研究

基于潜在类别分析的婴儿睡眠模式及其影响因素研究

作者信息 +

Infant sleep patterns based on latent class analysis and their influencing factors

Author information +
文章历史 +

摘要

目的 识别婴儿期睡眠模式并探讨其影响因素,为健康睡眠模式的形成及干预提供科学依据。 方法 纳入上海优生儿童队列中1 483名12月龄婴儿,通过简明婴幼儿睡眠问卷评估其睡眠状况。采用潜在类别分析、整合睡眠行为及睡眠问题变量,识别典型睡眠模式。采用二分类logistic回归模型分析其影响因素。 结果 共识别出两类睡眠模式:睡眠模式良好组,其特征为睡眠习惯好、睡眠问题少;睡眠模式较差组,表现为睡眠习惯差、睡眠问题多。Logistic回归结果显示,与已停止母乳喂养的儿童相比,12月龄仍在母乳喂养(OR=1.725,P<0.001)的儿童更易形成较差的睡眠模式;与家庭经济状况良好及以上儿童相比,经济拮据(OR=1.638,P=0.003)儿童形成较差睡眠模式的可能性也更高;户外活动时间>1 h/d(OR=0.633,P<0.001)与较好的睡眠模式显著相关。屏幕暴露增加较差睡眠模式形成的风险(OR=1.887,P<0.001)。 结论 婴儿睡眠模式受多种因素影响,增加户外活动、限制屏幕使用有助于婴儿形成良好的睡眠模式。

Abstract

Objective To identify infant sleep patterns and explore their influencing factors, providing scientific evidence for the formation and intervention of healthy sleep patterns. Methods A total of 1 483 12-month-old infants from the Shanghai Birth Cohort were included. Sleep status was assessed using the Brief Infant Sleep Questionnaire. Latent class analysis was performed to integrate sleep behavior and sleep problem variables and to identify typical sleep patterns. A binary logistic regression model was employed to examine influencing factors. Results Two sleep patterns were identified: a good sleep pattern characterized by healthier sleep habits and fewer sleep problems, and a poor sleep pattern characterized by poorer sleep habits and more sleep problems. Logistic regression analysis showed that, compared with infants who had stopped breastfeeding, infants still being breastfed at 12 months were more likely to develop poor sleep patterns (OR=1.725, P<0.001). Compared with infants from families with better economic status, those from families with economic hardship were more likely to develop poor sleep patterns (OR=1.638, P=0.003). Outdoor activity for more than one hour per day was associated with better sleep patterns (OR=0.633, P<0.001), while screen exposure increased the risk of poor sleep patterns (OR=1.887, P<0.001). Conclusions Infant sleep patterns are influenced by multiple factors; increasing outdoor activity and limiting screen exposure help infants form good sleep patterns.

关键词

睡眠 / 潜在类别分析 / 影响因素 / 婴儿

Key words

Sleep / Latent class analysis / Influencing factor / Infant

引用本文

导出引用
韦玮, 王惠, 张军. 基于潜在类别分析的婴儿睡眠模式及其影响因素研究[J]. 中国当代儿科杂志. 2026, 28(1): 49-55 https://doi.org/10.7499/j.issn.1008-8830.2506105
Wei WEI, Hui WANG, Jun ZHANG. Infant sleep patterns based on latent class analysis and their influencing factors[J]. Chinese Journal of Contemporary Pediatrics. 2026, 28(1): 49-55 https://doi.org/10.7499/j.issn.1008-8830.2506105

参考文献

[1]
Van Cauter E, Plat L. Physiology of growth hormone secretion during sleep[J]. J Pediatr, 1996, 128(5 Pt 2): S32-S37. DOI: 10.1016/s0022-3476(96)70008-2 .
[2]
Lokhandwala S, Spencer RMC. Relations between sleep patterns early in life and brain development: a review[J]. Dev Cogn Neurosci, 2022, 56: 101130. PMCID: PMC9254005. DOI: 10.1016/j.dcn.2022.101130 .
[3]
Sivertsen B, Harvey AG, Reichborn-Kjennerud T, et al. Later emotional and behavioral problems associated with sleep problems in toddlers: a longitudinal study[J]. JAMA Pediatr, 2015, 169(6): 575-582. DOI: 10.1001/jamapediatrics.2015.0187 .
[4]
Kikuchi K, Michikawa T, Morokuma S, et al. Infants' early recovery from sleep disturbance is associated with a lower risk of developmental delay in the Japan Environment and Children's Study[J]. Sci Rep, 2024, 14(1): 17773. PMCID: PMC11294529. DOI: 10.1038/s41598-024-68672-5 .
[5]
Meltzer LJ, Williamson AA, Mindell JA. Pediatric sleep health: it matters, and so does how we define it[J]. Sleep Med Rev, 2021, 57: 101425. PMCID: PMC9067252. DOI: 10.1016/j.smrv.2021.101425 .
[6]
梁雅丽, 马洁, 张裕晓, 等. 基于K-means聚类分析的婴幼儿睡眠模式及与母乳喂养关系的研究[J]. 中国当代儿科杂志, 2022, 24(10): 1154-1160. PMCID: PMC9627993. DOI: 10.7499/j.issn.1008-8830.2205027 .
[7]
袁姗姗, 张丽芳, 魏雪灵, 等. 12月龄婴儿睡眠模式与6岁儿童行为问题的关联性研究[J]. 中国妇幼健康研究, 2024, 35(5): 1-7. DOI: 10.3969/j.issn.1673-5293.2024.05.001 .
[8]
Zhang J, Tian Y, Wang W, et al. Cohort profile: the Shanghai Birth Cohort[J]. Int J Epidemiol, 2019, 48(1): 21-21g. DOI: 10.1093/ije/dyy277 .
[9]
Sadeh A. A brief screening questionnaire for infant sleep problems: validation and findings for an internet sample[J]. Pediatrics, 2004, 113(6): e570-e577. DOI: 10.1542/peds.113.6.e570 .
[10]
Sinha P, Calfee CS, Delucchi KL. Practitioner's guide to latent class analysis: methodological considerations and common pitfalls[J]. Crit Care Med, 2021, 49(1): e63-e79. PMCID: PMC7746621. DOI: 10.1097/CCM.0000000000004710 .
[11]
Weller BE, Bowen NK, Faubert SJ. Latent class analysis: a guide to best practice[J]. J Black Psychol, 2020, 46(4): 287-311. DOI: 10.1177/0095798420930932 .
[12]
中国医师协会睡眠专业委员会儿童睡眠学组, 中华医学会儿科学分会儿童保健学组, 中国医师协会儿童健康专业委员会, 等. 中国6岁以下儿童就寝问题和夜醒治疗指南(2023)[J]. 中华儿科杂志, 2023, 61(5): 388-397. DOI: 10.3760/cma.j.cn112140-20230218-00110 .
[13]
中华人民共和国国家卫生和计划生育委员会. 0岁~5岁儿童睡眠卫生指南: WS/T 579-2017 [S]. 北京: 中国标准出版社, 2017.
[14]
Rubin DB. Multiple imputation[M]//van Buuren S. Flexible imputation of missing data. 2nd ed. New York: Chapman and Hall/CRC, 2018: 29-62.
[15]
Linzer DA, Lewis JB. poLCA: an R package for polytomous variable latent class analysis[J]. J Stat Softw, 2011, 42(10): 1-29. DOI: 10.18637/jss.v042.i10 .
[16]
Feng WW, Zhang Y, Wang HS, et al. Understanding the choice of sleep arrangements and soothing methods and their associations with sleep problems among children under 3 years old: a Chinese population-based study[J]. Biomed Environ Sci, 2022, 35(3): 225-233. DOI: 10.3967/bes2022.031 .
[17]
张丽晋, 王丹, 康洪霞, 等. 北京市两区婴儿睡眠行为和睡眠问题横断面研究[J]. 中国儿童保健杂志, 2023, 31(6): 689-692. DOI: 10.11852/zgetbjzz2022-0699 .
[18]
蔡珊珊, 刘晖, 方芬, 等. 湖南省常德市4 894名婴幼儿睡眠状况分析[J]. 中国妇幼卫生杂志, 2024, 15(2): 16-21. DOI: 10.19757/j.cnki.issn1674-7763.2024.02.004 .
[19]
Mindell JA, Sadeh A, Kohyama J, et al. Parental behaviors and sleep outcomes in infants and toddlers: a cross-cultural comparison[J]. Sleep Med, 2010, 11(4): 393-399. DOI: 10.1016/j.sleep.2009.11.011 .
[20]
Mileva-Seitz VR, Bakermans-Kranenburg MJ, Battaini C, et al. Parent-child bed-sharing: the good, the bad, and the burden of evidence[J]. Sleep Med Rev, 2017, 32: 4-27. DOI: 10.1016/j.smrv.2016.03.003 .
[21]
冯围围, 徐韬, 王惠珊, 等. 0~3月龄婴儿家长睡眠养育行为特点及影响因素的纵向研究[J]. 中国儿童保健杂志, 2020, 28(5): 497-501. DOI: 10.11852/zgetbjzz2019-0822 .
[22]
谢亮亮, 严双琴, 曹慧, 等. 视屏暴露和户外活动与幼儿睡眠的关联研究[J]. 中国儿童保健杂志, 2022, 30(5): 566-569. DOI: 10.11852/zgetbjzz2021-1832 .
[23]
Luo J, Cao M, Sun F, et al. Association between outdoor activity and insufficient sleep in Chinese school-aged children[J]. Med Sci Monit, 2020, 26: e921617. PMCID: PMC7245060. DOI: 10.12659/msm.921617 .
[24]
Cheung CHM, Bedford R, Saez De Urabain IR, et al. Daily touchscreen use in infants and toddlers is associated with reduced sleep and delayed sleep onset[J]. Sci Rep, 2017, 7: 46104. PMCID: PMC5390665. DOI: 10.1038/srep46104 .
[25]
Chindamo S, Buja A, DeBattisti E, et al. Sleep and new media usage in toddlers[J]. Eur J Pediatr, 2019, 178(4): 483-490. DOI: 10.1007/s00431-019-03318-7 .
[26]
Kahn M, Barnett N, Glazer A, et al. Sleep and screen exposure across the beginning of life: deciphering the links using big-data analytics[J]. Sleep, 2021, 44(3): zsaa158. DOI: 10.1093/sleep/zsaa158 .
[27]
Twenge JM, Hisler GC, Krizan Z. Associations between screen time and sleep duration are primarily driven by portable electronic devices: evidence from a population-based study of U.S. children ages 0-17[J]. Sleep Med, 2019, 56: 211-218. DOI: 10.1016/j.sleep.2018.11.009 .
[28]
Przybylski AK. Digital screen time and pediatric sleep: evidence from a preregistered cohort study[J]. J Pediatr, 2019, 205: 218-223. DOI: 10.1016/j.jpeds.2018.09.054 .

脚注

所有作者均声明无利益冲突。

基金

国家自然科学基金面上项目(82273646)
上海市卫生健康委协同创新集群计划(2020CXJQ01)

版权

版权所有 © 2023中国当代儿科杂志
PDF(662 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/