运动诱发性高胰岛素血症的遗传机制和诊疗综述

张启婷, 侯凌

中国当代儿科杂志 ›› 2026, Vol. 28 ›› Issue (1) : 128-134.

PDF(836 KB)
HTML
PDF(836 KB)
HTML
中国当代儿科杂志 ›› 2026, Vol. 28 ›› Issue (1) : 128-134. DOI: 10.7499/j.issn.1008-8830.2507173
综述

运动诱发性高胰岛素血症的遗传机制和诊疗综述

作者信息 +

Exercise-induced hyperinsulinism: genetic basis and clinical management

Author information +
文章历史 +

摘要

运动诱发性高胰岛素血症,也称为单羧酸转运体1型高胰岛素血症,是一种罕见的先天性高胰岛素血症亚型,由编码单羧酸转运体1的SLC16A1基因功能获得性变异所致。目前文献报道的病例不足20例。该文对运动诱发性高胰岛素血症的遗传发病机制、当前诊断和治疗进行系统综述,以提高临床医生对该病的认识。

Abstract

Exercise-induced hyperinsulinism, also known as monocarboxylate transporter 1 hyperinsulinemia, is a rare subtype of congenital hyperinsulinism caused by gain-of-function variants in the SLC16A1 gene, which encodes monocarboxylate transporter 1. Fewer than 20 cases have been reported in the literature. In this review, the genetic pathogenesis, current diagnosis, and treatment of exercise-induced hyperinsulinism are systematically reviewed to improve clinicians' understanding of the disease.

关键词

运动诱发性高胰岛素血症 / 低血糖 / 单羧酸转运体1 / 二氮嗪

Key words

Exercise-induced hyperinsulinism / Hypoglycemia / Monocarboxylate transporter 1 / Diazoxide

引用本文

导出引用
张启婷, 侯凌. 运动诱发性高胰岛素血症的遗传机制和诊疗综述[J]. 中国当代儿科杂志. 2026, 28(1): 128-134 https://doi.org/10.7499/j.issn.1008-8830.2507173
Qi-Ting ZHANG, Ling HOU. Exercise-induced hyperinsulinism: genetic basis and clinical management[J]. Chinese Journal of Contemporary Pediatrics. 2026, 28(1): 128-134 https://doi.org/10.7499/j.issn.1008-8830.2507173

参考文献

[1]
Giri D, Hawton K, Senniappan S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management[J]. J Pediatr Endocrinol Metab, 2022, 35(3): 279-296. DOI: 10.1515/jpem-2021-0369 .
[2]
Martino M, Sartorelli J, Gragnaniello V, et al. Congenital hyperinsulinism in clinical practice: from biochemical pathophysiology to new monitoring techniques[J]. Front Pediatr, 2022, 10: 901338. PMCID: PMC9538154. DOI: 10.3389/fped.2022.901338 .
[3]
Banerjee I, Salomon-Estebanez M, Shah P, et al. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia[J]. Diabet Med, 2019, 36(1): 9-21. PMCID: PMC6585719. DOI: 10.1111/dme.13823 .
[4]
Yau D, Laver TW, Dastamani A, et al. Using referral rates for genetic testing to determine the incidence of a rare disease: the minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389[J]. PLoS One, 2020, 15(2): e0228417. PMCID: PMC7004321. DOI: 10.1371/journal.pone.0228417 .
[5]
Galcheva S, Al-Khawaga S, Hussain K. Diagnosis and management of hyperinsulinaemic hypoglycaemia[J]. Best Pract Res Clin Endocrinol Metab, 2018, 32(4): 551-573. DOI: 10.1016/j.beem.2018.05.014 .
[6]
Roeper M, Salimi Dafsari R, Hoermann H, et al. Risk factors for adverse neurodevelopment in transient or persistent congenital hyperinsulinism[J]. Front Endocrinol (Lausanne), 2020, 11: 580642. PMCID: PMC7793856. DOI: 10.3389/fendo.2020.580642 .
[7]
Thornton PS, Stanley CA, De Leon DD. Congenital hyperinsulinism: an historical perspective[J]. Horm Res Paediatr, 2022, 95(6): 631-637. DOI: 10.1159/000526442 .
[8]
Banerjee I, Raskin J, Arnoux JB, et al. Congenital hyperinsulinism in infancy and childhood: challenges, unmet needs and the perspective of patients and families[J]. Orphanet J Rare Dis, 2022, 17(1): 61. PMCID: PMC8858501. DOI: 10.1186/s13023-022-02214-y .
[9]
Worth C, Yau D, Salomon Estebanez M, et al. Complexities in the medical management of hypoglycaemia due to congenital hyperinsulinism[J]. Clin Endocrinol (Oxf), 2020, 92(5): 387-395. DOI: 10.1111/cen.14152 .
[10]
Sivasubramanian M, Avari P, Gilbert C, et al. Accuracy and impact on quality of life of real-time continuous glucose monitoring in children with hyperinsulinaemic hypoglycaemia[J]. Front Endocrinol (Lausanne), 2023, 14: 1265076. PMCID: PMC10562688. DOI: 10.3389/fendo.2023.1265076 .
[11]
程明, 王冬梅, 苏畅, 等. 儿童先天性高胰岛素血症的诊疗进展[J]. 中华实用儿科临床杂志, 2025, 40(4): 308-312. DOI: 10.3760/cma.j.cn101070-20240612-00364 .
[12]
Sabi SH, Alzreqat RK, Almaaytah AM, et al. Genetic variations in hyperinsulinemic hypoglycemia: active versus inactive mutations[J]. Diabetes Metab Syndr Obes, 2024, 17: 4439-4452. PMCID: PMC11607999. DOI: 10.2147/DMSO.S482056 .
[13]
Zhang W, Sang YM. Genetic pathogenesis, diagnosis, and treatment of short-chain 3-hydroxyacyl-coenzyme A dehydrogenase hyperinsulinism[J]. Orphanet J Rare Dis, 2021, 16(1): 467. PMCID: PMC8567654. DOI: 10.1186/s13023-021-02088-6 .
[14]
Shah IA, Rashid R, Bhat A, et al. A novel mutation in the KCNJ11 gene (p.Val36Glu), predisposes to congenital hyperinsulinemia[J]. Gene, 2023, 878: 147576. DOI: 10.1016/j.gene.2023.147576 .
[15]
Boodhansingh KE, Rosenfeld E, Lord K, et al. Mosaic GLUD1 mutations associated with hyperinsulinism hyperammonemia syndrome[J]. Horm Res Paediatr, 2022, 95(5): 492-498. PMCID: PMC9671865. DOI: 10.1159/000526203 .
[16]
Otonkoski T, Jiao H, Kaminen-Ahola N, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells[J]. Am J Hum Genet, 2007, 81(3): 467-474. PMCID: PMC1950828. DOI: 10.1086/520960 .
[17]
Frampton R, Lewis D, Rahman Y, et al. Hypoglycaemia following physical exercise in a patient with novel SLC16A1 variant[J]. Eur J Endocrinol, 2025, 192(1): K1-K5. DOI: 10.1093/ejendo/lvae159 .
[18]
Burman WJ, McDermott MT, Bornemann M. Familial hyperinsulinism presenting in adults[J]. Arch Intern Med, 1992, 152(10): 2125-2127.
[19]
Meissner T, Otonkoski T, Feneberg R, et al. Exercise induced hypoglycaemic hyperinsulinism[J]. Arch Dis Child, 2001, 84(3): 254-257. PMCID: PMC1718690. DOI: 10.1136/adc.84.3.254 .
[20]
Pullen TJ, Sylow L, Sun G, et al. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise[J]. Diabetes, 2012, 61(7): 1719-1725. PMCID: PMC3379650. DOI: 10.2337/db11-1531 .
[21]
Tosur M, Jeha GS. A novel intragenic SLC16A1 mutation associated with congenital hyperinsulinism[J]. Glob Pediatr Health, 2017, 4: 2333794X17703462. PMCID: PMC5406188. DOI: 10.1177/2333794X17703462 .
[22]
徐子迪, 桑艳梅, 吴玉筠. SLC16A1基因突变致先天性高胰岛素血症一例临床分析[J]. 中华糖尿病杂志, 2018, 10(3): 234-236. DOI: 10.3760/cma.j.issn.1674-5809.2018.03.015 .
[23]
Senniappan S, Shanti B, James C, et al. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management[J]. Inherit Metab Dis,2012,35(4): 589-601. DOI: 10.1007/s10545-011-9441-2 .
[24]
Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid[J]. AAPS J, 2008, 10(2): 311-321. PMCID: PMC2574616. DOI: 10.1208/s12248-008-9035-6 .
[25]
Felmlee MA, Jones RS, Rodriguez-Cruz V, et al. Monocarboxylate transporters (SLC16): function, regulation, and role in health and disease[J]. Pharmacol Rev, 2020, 72(2): 466-485. PMCID: PMC7062045. DOI: 10.1124/pr.119.018762 .
[26]
Fisel P, Schaeffeler E, Schwab M. Clinical and functional relevance of the monocarboxylate transporter family in disease pathophysiology and drug therapy[J]. Clin Transl Sci, 2018, 11(4): 352-364. PMCID: PMC6039204. DOI: 10.1111/cts.12551 .
[27]
Liu T, Han S, Yao Y, et al. Role of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) in tumor cells and the tumor microenvironment[J]. Cancer Manag Res, 2023, 15: 957-975. PMCID: PMC10487743. DOI: 10.2147/CMAR.S421771 .
[28]
Duan Q, Zhang S, Wang Y, et al. Proton-coupled monocarboxylate transporters in cancer: from metabolic crosstalk, immunosuppression and anti-apoptosis to clinical applications[J]. Front Cell Dev Biol, 2022, 10: 1069555. PMCID: PMC9727313. DOI: 10.3389/fcell.2022.1069555 .
[29]
Luo X, Li Z, Chen L, et al. Monocarboxylate transporter 1 in the liver modulates high-fat diet-induced obesity and hepatic steatosis in mice[J]. Metabolism, 2023, 143: 155537. DOI: 10.1016/j.metabol.2023.155537 .
[30]
Bozacı AE, Ünal AT. Rare cause of ketolysis: monocarboxylate transporter 1 deficiency[J]. Turk J Pediatr, 2022, 64(4): 741-746. DOI: 10.24953/turkjped.2021.4915 .
[31]
Ota S, Sakuraba H, Hiraga H, et al. Cyclosporine protects from intestinal epithelial injury by modulating butyrate uptake via upregulation of membrane monocarboxylate transporter 1 levels[J]. Biochem Biophys Rep, 2020, 24: 100811. PMCID: PMC7578528. DOI: 10.1016/j.bbrep.2020.100811 .
[32]
Fu JM, Satterstrom FK, Peng M, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism[J]. Nat Genet, 2022, 54(9): 1320-1331. PMCID: PMC9653013. DOI: 10.1038/s41588-022-01104-0 .
[33]
Nessa A, Rahman SA, Hussain K. Hyperinsulinemic hypoglycemia: the molecular mechanisms[J]. Front Endocrinol (Lausanne), 2016, 7: 29. PMCID: PMC4815176. DOI: 10.3389/fendo.2016.00029 .
[34]
Otonkoski T, Kaminen N, Ustinov J, et al. Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release[J]. Diabetes, 2003, 52(1): 199-204. DOI: 10.2337/diabetes.52.1.199 .
[35]
Velde CD, Reigstad H, Tjora E, et al. Congenital hyperinsulinism[J]. Tidsskr Nor Laegeforen, 2023, 143(18): 1-10. DOI: 10.4045/tidsskr.23.0425 .
[36]
中华医学会儿科学分会内分泌遗传代谢学组, 中华儿科杂志编辑委员会. 先天性高胰岛素血症性低血糖诊治专家共识(2022)[J]. 中华儿科杂志, 2023, 61(5): 412-417. DOI: 10.3760/cma.j.cn112140-20221031-00924 .
[37]
De Leon DD, Arnoux JB, Banerjee I, et al. International guidelines for the diagnosis and management of hyperinsulinism[J]. Horm Res Paediatr, 2024, 97(3): 279-298. PMCID: PMC11124746. DOI: 10.1159/000531766 .
[38]
Larsen AR, Brusgaard K, Christesen HT, et al. Genotype-histotype-phenotype correlations in hyperinsulinemic hypoglycemia[J]. Histol Histopathol, 2024, 39(7): 817-844. DOI: 10.14670/HH-18-709 .
[39]
中华医学会儿科学分会内分泌遗传代谢学组, 中国医师协会青春期健康与医学专业委员会, 中国医师协会儿科内分泌遗传代谢学组, 等. 儿童先天性高胰岛素血症遗传检测和咨询专家共识(2023)[J]. 中华儿科杂志, 2023, 61(7): 594-599. DOI: 10.3760/cma.j.cn112140-20221220-01059 .
[40]
Pullen TJ, Rutter GA. When less is more: the forbidden fruits of gene repression in the adult β-cell[J]. Diabetes Obes Metab, 2013, 15(6): 503-512. DOI: 10.1111/dom.12029 .
[41]
Hermann HP, Pieske B, Schwarzmüller E, et al. Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study[J]. Lancet, 1999, 353(9161): 1321-1323. DOI: 10.1016/s0140-6736(98)06423-x .
[42]
Denkboy Öngen Y, Eren E, Sağlam H. Maltodextrin may be a promising treatment modality after near-total pancreatectomy in infants younger than six months with persistent hyperinsulinism: a case report[J]. J Clin Res Pediatr Endocrinol, 2023, 15(1): 103-107. PMCID: PMC9976159. DOI: 10.4274/jcrpe.galenos.2021.2021.0121 .
[43]
Skae M, Avatapalle HB, Banerjee I, et al. Reduced glycemic variability in diazoxide-responsive children with congenital hyperinsulinism using supplemental omega-3-polyunsaturated fatty acids; a pilot trial with MaxEPA(R.)[J]. Front Endocrinol (Lausanne), 2014, 5: 31. PMCID: PMC3952031. DOI: 10.3389/fendo.2014.00031 .
[44]
Brar PC, Heksch R, Cossen K, et al. Management and appropriate use of diazoxide in infants and children with hyperinsulinism[J]. J Clin Endocrinol Metab, 2020, 105(12): dgaa543. DOI: 10.1210/clinem/dgaa543 .
[45]
Newman-Lindsay S, Lakshminrusimha S, Sankaran D. Diazoxide for neonatal hyperinsulinemic hypoglycemia and pulmonary hypertension[J]. Children (Basel), 2022, 10(1): 5. PMCID: PMC9856357. DOI: 10.3390/children10010005 .
[46]
Keyes ML, Healy H, Sparger KA, et al. Necrotizing enterocolitis in neonates with hyperinsulinemic hypoglycemia treated with diazoxide[J]. Pediatrics, 2021, 147(2): e20193202. PMCID: PMC7849198. DOI: 10.1542/peds.2019-3202 .

脚注

所有作者均声明不存在任何利益冲突。


版权

版权所有 © 2023中国当代儿科杂志
PDF(836 KB)
HTML

Accesses

Citation

Detail

段落导航
相关文章

/