Neurodevelopmental assessment of children with congenital heart disease: a Meta analysis based on the Bayley Scales of Infant Development and Wechsler Intelligence Scale

Meng-Ting SUN, Man-Jun LUO, Jia-Peng TANG, Ye CHEN, Ke-Bin CHEN, Qi ZOU, Xiao-Rui RUAN, Yuan PENG, Zhan-Wen LI, Yu-Ting WEN, Cheng-Lu ZHOU, Ting-Ting WANG, Jia-Bi QIN

Chinese Journal of Contemporary Pediatrics ›› 2026, Vol. 28 ›› Issue (1) : 30-41.

PDF(2067 KB)
HTML
PDF(2067 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2026, Vol. 28 ›› Issue (1) : 30-41. DOI: 10.7499/j.issn.1008-8830.2503068
CLINICAL RESEARCH

Neurodevelopmental assessment of children with congenital heart disease: a Meta analysis based on the Bayley Scales of Infant Development and Wechsler Intelligence Scale

Author information +
History +

Abstract

Objective To systematically evaluate neurodevelopmental differences between children with congenital heart disease (CHD) and healthy controls. Methods A comprehensive search was conducted in Web of Science, PubMed, Embase, Wanfang Data, China National Knowledge Infrastructure, Chinese Biomedical Literature Service System, and VIP Database to identify studies published from database inception to February 2025 that assessed the neurodevelopment of children with CHD (CHD group) and healthy controls (control group) using the Bayley Scales of Infant Development (BSID) and the Wechsler Intelligence Scale. In total, 33 studies involving 3 316 children were included. Hedges' g was used as the effect size. Meta analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using STATA/SE 17.0. Results Based on BSID-II, compared with the control group, the CHD group had significantly lower mental development index (Hedges' g=-1.09) and psychomotor development index (Hedges' g=-1.22) scores (both P<0.001). Based on BSID-III, compared with the control group, the CHD group had markedly lower scores in cognition (Hedges' g=-0.78), language (Hedges' g=-0.65), and motor (Hedges' g=-0.98) (all P<0.001). The Wechsler Intelligence Scale indicated that, compared with the control group, the CHD group had significantly lower full-scale intelligence quotient (Hedges' g=-0.74), verbal intelligence quotient (Hedges' g=-0.86), and performance intelligence quotient (Hedges' g=-0.67) (all P<0.001). Conclusions Children with CHD exhibit developmental delays in cognition, language, motor function, and intelligence.

Key words

Congenital heart disease / Neurodevelopment / Bayley Scales of Infant Development / Wechsler Intelligence Scale / Child

Cite this article

Download Citations
Meng-Ting SUN , Man-Jun LUO , Jia-Peng TANG , et al . Neurodevelopmental assessment of children with congenital heart disease: a Meta analysis based on the Bayley Scales of Infant Development and Wechsler Intelligence Scale[J]. Chinese Journal of Contemporary Pediatrics. 2026, 28(1): 30-41 https://doi.org/10.7499/j.issn.1008-8830.2503068

References

[1]
Liu Y, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies[J]. Int J Epidemiol, 2019, 48(2): 455-463. PMCID: PMC6469300. DOI: 10.1093/ije/dyz009 .
[2]
Zhao L, Chen L, Yang T, et al. Birth prevalence of congenital heart disease in China, 1980-2019: a systematic review and meta-analysis of 617 studies[J]. Eur J Epidemiol, 2020, 35(7): 631-642. PMCID: PMC7387380. DOI: 10.1007/s10654-020-00653-0 .
[3]
Zhao QM, Liu F, Wu L, et al. Prevalence of congenital heart disease at live birth in China[J]. J Pediatr, 2019, 204: 53-58. DOI: 10.1016/j.jpeds.2018.08.040 .
[4]
Latal B. Neurodevelopmental outcomes of the child with congenital heart disease[J]. Clin Perinatol, 2016, 43(1): 173-185. DOI: 10.1016/j.clp.2015.11.012 .
[5]
Sun L, Macgowan CK, Sled JG, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease[J]. Circulation, 2015, 131(15): 1313-1323. PMCID: PMC4398654. DOI: 10.1161/CIRCULATIONAHA.114.013051 .
[6]
Lim JM, Kingdom T, Saini B, et al. Cerebral oxygen delivery is reduced in newborns with congenital heart disease[J]. J Thorac Cardiovasc Surg, 2016, 152(4): 1095-1103. DOI: 10.1016/j.jtcvs.2016.05.027 .
[7]
Miatton M, De Wolf D, François K, et al. Neurocognitive consequences of surgically corrected congenital heart defects: a review[J]. Neuropsychol Rev, 2006, 16(2): 65-85. DOI: 10.1007/s11065-006-9005-7 .
[8]
Gaynor JW, Stopp C, Wypij D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy[J]. Pediatrics, 2015, 135(5): 816-825. PMCID: PMC4533222. DOI: 10.1542/peds.2014-3825 .
[9]
Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses[EB/OL]. [2025-01-14].
[10]
Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review[J]. J Evid Based Med, 2015, 8(1): 2-10. DOI: 10.1111/jebm.12141 .
[11]
Bayley N. Bayley Scales of Infant Development[M]. 2nd ed. San Antonio, TX: The Psychological Corporation, 1993.
[12]
Hack M, Taylor HG, Drotar D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age[J]. Pediatrics, 2005, 116(2): 333-341. DOI: 10.1542/peds.2005-0173 .
[13]
Albers CA, Grieve AJ. Test Review: Bayley, N. (2006). Bayley Scales of Infant and Toddler Development: Third Edition. San Antonio, TX: Harcourt Assessment[J]. J Psychoeduc Assess, 2007, 25(2): 180-190. DOI: 10.1177/0734282906297199 .
[14]
Bayley N. Bayley Scales of Infant and Toddler Development[M]. 3rd ed. San Antonio, TX: Pearson PsychCorp, 2006.
[15]
Provost S, Fourdain S, Vannasing P, et al. Relationship between 4-month functional brain network topology and 24-month neurodevelopmental outcome in children with congenital heart disease[J]. Eur J Paediatr Neurol, 2023, 47: 47-59. DOI: 10.1016/j.ejpn.2023.09.005 .
[16]
Na SD, Burns TG. Wechsler Intelligence Scale for Children-V: test review[J]. Appl Neuropsychol Child, 2016, 5(2): 156-160. DOI: 10.1080/21622965.2015.1015337 .
[17]
Hurks P, Hendriksen J, Dek J, et al. Accuracy of short forms of the Dutch Wechsler Preschool and Primary Scale of Intelligence: third edition[J]. Assessment, 2016, 23(2): 240-249. DOI: 10.1177/1073191115577189 .
[18]
Speckert A, Payette K, Knirsch W, et al. Altered connectome topology in newborns at risk for cognitive developmental delay: a cross-etiologic study[J]. Hum Brain Mapp, 2025, 46(1): e70084. PMCID: PMC11718324. DOI: 10.1002/hbm.70084 .
[19]
Steger C, Feldmann M, Borns J, et al. Neurometabolic changes in neonates with congenital heart defects and their relation to neurodevelopmental outcome[J]. Pediatr Res, 2023, 93(6): 1642-1650. PMCID: PMC10172141. DOI: 10.1038/s41390-022-02253-y .
[20]
Sadhwani A, Wypij D, Rofeberg V, et al. Fetal brain volume predicts neurodevelopment in congenital heart disease[J]. Circulation, 2022, 145(15): 1108-1119. PMCID: PMC9007882. DOI: 10.1161/CIRCULATIONAHA.121.056305 .
[21]
Hottinger SJ, Liamlahi R, Feldmann M, et al. Postoperative improvement of brain maturation in infants with congenital heart disease[J]. Semin Thorac Cardiovasc Surg, 2022, 34(1): 251-259. DOI: 10.1053/j.semtcvs.2020.11.029 .
[22]
Yoshida T, Hiraiwa A, Ibuki K, et al. Neurodevelopmental outcomes at 3 years for infants with congenital heart disease and very-low birthweight[J]. Pediatr Int, 2020, 62(7): 797-803. DOI: 10.1111/ped.14160 .
[23]
Meuwly E, Feldmann M, Knirsch W, et al. Postoperative brain volumes are associated with one-year neurodevelopmental outcome in children with severe congenital heart disease[J]. Sci Rep, 2019, 9(1): 10885. PMCID: PMC6659678. DOI: 10.1038/s41598-019-47328-9 .
[24]
Goldsworthy M, Franich-Ray C, Kinney S, et al. Relationship between social-emotional and neurodevelopment of 2-year-old children with congenital heart disease[J]. Congenit Heart Dis, 2016, 11(5): 378-385. DOI: 10.1111/chd.12320 .
[25]
Hallioglu O, Gurer G, Bozlu G, et al. Evaluation of neurodevelopment using Bayley-III in children with cyanotic or hemodynamically impaired congenital heart disease[J]. Congenit Heart Dis, 2015, 10(6): 537-541. DOI: 10.1111/chd.12269 .
[26]
Chen CY, Harrison T, Heathcock J. Infants with complex congenital heart diseases show poor short-term memory in the mobile paradigm at 3 months of age[J]. Infant Behav Dev, 2015, 40: 12-19. DOI: 10.1016/j.infbeh.2015.02.007 .
[27]
Cheatham SL, Carey H, Chisolm JL, et al. Early results of neurodevelopment following hybrid stage I for hypoplastic left heart syndrome[J]. Pediatr Cardiol, 2015, 36(3): 685-691. DOI: 10.1007/s00246-014-1065-5 .
[28]
桂娟, 何少茹, 孙云霞, 等. 先天性心脏病小婴儿18月龄时神经发育障碍及影响因素研究[J]. 中华胸心血管外科杂志, 2019, 35(10): 577-582. DOI: 10.3760/cma.j.issn.1001-4497.2019.10.001 .
[29]
钟秀兰. 先天性心脏病婴儿生长及智力发育状况的研究[J]. 饮食保健, 2018, 5(4): 51. DOI: 10.3969/j.issn.2095-8439.2018.04.060 .
[30]
Yilmaz İZ, Erdur B, Ozbek E, et al. Neurodevelopmental evaluation of children with cyanotic congenital heart disease[J]. Minerva Pediatr, 2018, 70(4): 365-370. DOI: 10.23736/S0026-4946.17.04265-7 .
[31]
Rollins CK, Asaro LA, Akhondi-Asl A, et al. White matter volume predicts language development in congenital heart disease[J]. J Pediatr, 2017, 181: 42-48.e2. PMCID: PMC5274582. DOI: 10.1016/j.jpeds.2016.09.070 .
[32]
杨望, 温恩懿, 胡斌, 等. 婴幼儿先天性心脏病合并认知及运动功能障碍的临床研究[J]. 第三军医大学学报, 2015, 37(2): 164-166. DOI: 10.16016/j.1000-5404.201408127 .
[33]
Puosi R, Korkman M, Sarajuuri A, et al. Neurocognitive development and behavioral outcome of 2-year-old children with univentricular heart[J]. J Int Neuropsychol Soc, 2011, 17(6): 1094-1103. DOI: 10.1017/S135561771100110X .
[34]
Matsuzaki T, Matsui M, Ichida F, et al. Neurodevelopment in 1-year-old Japanese infants after congenital heart surgery[J]. Pediatr Int, 2010, 52(3): 420-427. DOI: 10.1111/j.1442-200X.2009.02974.x .
[35]
Sarajuuri A, Jokinen E, Puosi R, et al. Neurodevelopment in children with hypoplastic left heart syndrome[J]. J Pediatr, 2010, 157(3): 414-420.e4. DOI: 10.1016/j.jpeds.2010.04.027 .
[36]
Matsuzaki T, Matsui M, Nakazawa J, et al. Application of the Bayley Scales of Infant Development as a developmental test for Japanese infants with congenital heart disease[J]. No To Hattatsu, 2008, 40(4): 308-312.
[37]
Schultz AH, Jarvik GP, Wernovsky G, et al. Effect of congenital heart disease on neurodevelopmental outcomes within multiple-gestation births[J]. J Thorac Cardiovasc Surg, 2005, 130(6): 1511-1516. DOI: 10.1016/j.jtcvs.2005.07.040 .
[38]
Vasserman M, Myers K, Brooks BL, et al. Patterns of WISC-V performance in children with congenital heart disease[J]. Pediatr Cardiol, 2024, 45(3): 483-490. DOI: 10.1007/s00246-023-03367-8 .
[39]
Provost S, Fourdain S, Vannasing P, et al. Language brain responses and neurodevelopmental outcome in preschoolers with congenital heart disease: a fNIRS study[J]. Neuropsychologia, 2024, 196: 108843. DOI: 10.1016/j.neuropsychologia.2024.108843 .
[40]
Ma S, Li Y, Liu Y, et al. Changes in cortical thickness are associated with cognitive ability in postoperative school-aged children with tetralogy of fallot[J]. Front Neurol, 2020, 11: 691. PMCID: PMC7380078. DOI: 10.3389/fneur.2020.00691 .
[41]
Sterken C, Lemiere J, Van den Berghe G, et al. Neurocognitive development after pediatric heart surgery[J]. Pediatrics, 2016, 137(6): e20154675. DOI: 10.1542/peds.2015-4675 .
[42]
Sarrechia I, Miatton M, François K, et al. Neurodevelopmental outcome after surgery for acyanotic congenital heart disease[J]. Res Dev Disabil, 2015, 45-46: 58-68. DOI: 10.1016/j.ridd.2015.07.004 .
[43]
Sarrechia I, Miatton M, De Wolf D, et al. Neurobehavioural functioning in school-aged children with a corrected septal heart defect[J]. Acta Cardiol, 2013, 68(1): 23-30. DOI: 10.1080/ac.68.1.2959628 .
[44]
Schaefer C, von Rhein M, Knirsch W, et al. Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease[J]. Dev Med Child Neurol, 2013, 55(12): 1143-1149. DOI: 10.1111/dmcn.12242 .
[45]
管国涛. 经导管介入封堵术或外科手术后室间隔缺损患儿学龄期的认知功能及行为问题[D]. 济南: 山东大学, 2011.
[46]
Miatton M, De Wolf D, François K, et al. Intellectual, neuropsychological, and behavioral functioning in children with tetralogy of Fallot[J]. J Thorac Cardiovasc Surg, 2007, 133(2): 449-455. DOI: 10.1016/j.jtcvs.2006.10.006 .
[47]
Miatton M, De Wolf D, François K, et al. Neuropsychological performance in school-aged children with surgically corrected congenital heart disease[J]. J Pediatr, 2007, 151(1): 73-78.e1. DOI: 10.1016/j.jpeds.2007.02.020 .
[48]
Yang LL, Liu ML, Townes BD. Neuropsychological and behavioral status of Chinese children with acyanotic congenital heart disease[J]. Int J Neurosci, 1994, 74(1-4): 109-115. DOI: 10.3109/00207459408987235 .
[49]
刘美兰, 杨玲玲. 先天性心脏病对儿童智力及行为发育的影响[J]. 中华神经精神科杂志, 1992, 25(3): 160-164.
[50]
Feldmann M, Bataillard C, Ehrler M, et al. Cognitive and executive function in congenital heart disease: a meta-analysis[J]. Pediatrics, 2021, 148(4): e2021050875. DOI: 10.1542/peds.2021-050875 .
[51]
Howell HB, Zaccario M, Kazmi SH, et al. Neurodevelopmental outcomes of children with congenital heart disease: a review[J]. Curr Probl Pediatr Adolesc Health Care, 2019, 49(10): 100685. DOI: 10.1016/j.cppeds.2019.100685 .
[52]
Stavinoha PL, Fixler DE, Mahony L. Cardiopulmonary bypass to repair an atrial septal defect does not affect cognitive function in children[J]. Circulation, 2003, 107(21): 2722-2725. DOI: 10.1161/01.CIR.0000070620.97086.65 .
[53]
Karsdorp PA, Everaerd W, Kindt M, et al. Psychological and cognitive functioning in children and adolescents with congenital heart disease: a meta-analysis[J]. J Pediatr Psychol, 2007, 32(5): 527-541. DOI: 10.1093/jpepsy/jsl047 .
[54]
Turner T, El Tobgy N, Russell K, et al. Language abilities in preschool children with critical CHD: a systematic review[J]. Cardiol Young, 2022, 32(5): 683-693. DOI: 10.1017/S1047951122001330 .
[55]
Sprong MCA, Broeders W, van der Net J, et al. Motor developmental delay after cardiac surgery in children with a critical congenital heart defect: a systematic literature review and meta-analysis[J]. Pediatr Phys Ther, 2021, 33(4): 186-197. DOI: 10.1097/PEP.0000000000000827 .
[56]
Huisenga D, La Bastide-Van Gemert S, Van Bergen A, et al. Developmental outcomes after early surgery for complex congenital heart disease: a systematic review and meta-analysis[J]. Dev Med Child Neurol, 2021, 63(1): 29-46. PMCID: PMC7754445. DOI: 10.1111/dmcn.14512 .
[57]
Snookes SH, Gunn JK, Eldridge BJ, et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease[J]. Pediatrics, 2010, 125(4): e818-e827. DOI: 10.1542/peds.2009-1959 .
[58]
Mills R, McCusker CG, Tennyson C, et al. Neuropsychological outcomes in CHD beyond childhood: a meta-analysis[J]. Cardiol Young, 2018, 28(3): 421-431. DOI: 10.1017/S104795111700230X .

Footnotes

所有作者声明无利益冲突。

PDF(2067 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/