Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway

Chao WANG, Meng-Xin WANG, Yan-Ping ZHU

Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1398-1407.

PDF(2571 KB)
HTML
PDF(2571 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2025, Vol. 27 ›› Issue (11) : 1398-1407. DOI: 10.7499/j.issn.1008-8830.2504152
EXPERIMENTAL RESEARCH

Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway

Author information +
History +

Abstract

Objective To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway. Methods A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze. Results At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05). Conclusions HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.

Key words

White matter injury / Oligodendrocyte / Nuclear factor-erythroid 2-related factor 2 / Human umbilical cord mesenchymal stem cell / Neonatal rat

Cite this article

Download Citations
Chao WANG , Meng-Xin WANG , Yan-Ping ZHU. Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway[J]. Chinese Journal of Contemporary Pediatrics. 2025, 27(11): 1398-1407 https://doi.org/10.7499/j.issn.1008-8830.2504152

References

[1]
World Health Organization. Preterm birth[EB/OL]. (2023-05-10)[2024-03-31].
[2]
Travers CP, Carlo WA, Ambalavanan N. The future of outcome prediction for preterm infants in the neonatal ICU[J]. Am J Respir Crit Care Med, 2022, 205(1): 6-8. PMCID: PMC8865594. DOI: 10.1164/rccm.202109-2188ED .
[3]
Lear BA, Lear CA, Dhillon SK, et al. Is late prevention of cerebral palsy in extremely preterm infants plausible?[J]. Dev Neurosci, 2022, 44(4-5): 177-185. DOI: 10.1159/000521618 .
[4]
Motavaf M, Piao X. Oligodendrocyte development and implication in perinatal white matter injury[J]. Front Cell Neurosci, 2021, 15: 764486. PMCID: PMC8599582. DOI: 10.3389/fncel.2021.764486 .
[5]
Tang H, Jiang Y, Zhang JH. Stem cell therapy for brain injury[J]. Stem Cells Dev, 2020, 29(4): 177. DOI: 10.1089/scd.2020.29005.tan .
[6]
Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3): 339-347. DOI: 10.3727/096368915X686841 .
[7]
Jia Y, Cao N, Zhai J, et al. HGF mediates clinical-grade human umbilical cord-derived mesenchymal stem cells improved functional recovery in a senescence-accelerated mouse model of Alzheimer's disease[J]. Adv Sci (Weinh), 2020, 7(17): 1903809. PMCID: PMC7507104. DOI: 10.1002/advs.201903809 .
[8]
Liu G, Wang D, Jia J, et al. Neuroprotection of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in alleviating ischemic stroke-induced brain injury by regulating inflammation and oxidative stress[J]. Neurochem Res, 2024, 49(10): 2871-2887. DOI: 10.1007/s11064-024-04212-x .
[9]
Robertson NJ, Meehan C, Martinello KA, et al. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia[J]. Cytotherapy, 2021, 23(6): 521-535. PMCID: PMC8139415. DOI: 10.1016/j.jcyt.2020.10.005 .
[10]
Dinkova-Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases[J]. FEBS J, 2018, 285(19): 3576-3590. PMCID: PMC6221096. DOI: 10.1111/febs.14379 .
[11]
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66: 102852. PMCID: PMC10462885. DOI: 10.1016/j.redox.2023.102852 .
[12]
Zhang Q, Luo C, Li Z, et al. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity[J]. Ecotoxicol Environ Saf, 2024, 271: 115960. DOI: 10.1016/j.ecoenv.2024.115960 .
[13]
Li Y, Huang J, Wang J, et al. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis[J]. J Neuroinflammation, 2023, 20(1): 49. PMCID: PMC9951499. DOI: 10.1186/s12974-023-02738-5 .
[14]
Ma S, Zhou X, Wang Y, et al. MG53 protein rejuvenates hUC-MSCs and facilitates their therapeutic effects in AD mice by activating Nrf2 signaling pathway[J]. Redox Biol, 2022, 53: 102325. PMCID: PMC9079718. DOI: 10.1016/j.redox.2022.102325 .
[15]
Wang CC, Hu XM, Long YF, et al. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF[J]. Life Sci, 2024, 356: 123014. DOI: 10.1016/j.lfs.2024.123014 .
[16]
Zhang L, Bai W, Peng Y, et al. Human umbilical cord mesenchymal stem cell-derived exosomes provide neuroprotection in traumatic brain injury through the lncRNA TUBB6/Nrf2 pathway[J]. Brain Res, 2024, 1824: 148689. DOI: 10.1016/j.brainres.2023.148689 .
[17]
Vannucci RC, Connor JR, Mauger DT, et al. Rat model of perinatal hypoxic-ischemic brain damage[J]. J Neurosci Res, 1999, 55(2): 158-163. DOI: 10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>3.0.CO;2-1 .
[18]
Cheng T, Xue X, Fu J. Effect of OLIG1 on the development of oligodendrocytes and myelination in a neonatal rat PVL model induced by hypoxia-ischemia[J]. Mol Med Rep, 2015, 11(4): 2379-2386. PMCID: PMC4337744. DOI: 10.3892/mmr.2014.3028 .
[19]
张军, 李明霞, 王超, 等. 不同剂量人脐带间充质干细胞移植对新生大鼠脑白质损伤的修复作用[J]. 中国当代儿科杂志, 2024, 26(4): 394-402. PMCID: PMC11057307. DOI: 10.7499/j.issn.1008-8830.2310081 .
[20]
徐倩倩, 张书绢, 王超, 等. 人脐带间充质干细胞对新生大鼠脑白质损伤的修复作用[J]. 中华新生儿科杂志(中英文), 2025, 40(5): 297-305. DOI: 10.3760/cma.j.cn101451-20241006-00348 .
[21]
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272. PMCID: PMC9357075. DOI: 10.1038/s41392-022-01134-4 .
[22]
Zhu LH, Bai X, Zhang N, et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage[J]. Brain Res, 2014, 1563: 13-21. DOI: 10.1016/j.brainres.2014.03.030 .
[23]
Liao Z, Yang X, Wang W, et al. hucMSCs transplantation promotes locomotor function recovery, reduces apoptosis and inhibits demyelination after SCI in rats[J]. Neuropeptides, 2021, 86: 102125. DOI: 10.1016/j.npep.2021.102125 .
[24]
Chen C, Hu N, Wang J, et al. Umbilical cord mesenchymal stem cells promote neurological repair after traumatic brain injury through regulating Treg/Th17 balance[J]. Brain Res, 2022, 1775: 147711. DOI: 10.1016/j.brainres.2021.147711 .
[25]
Feng J, He W, Xia J, et al. Human umbilical cord mesenchymal stem cells-derived exosomal circDLGAP4 promotes angiogenesis after cerebral ischemia-reperfusion injury by regulating miR-320/KLF5 axis[J]. FASEB J, 2023, 37(3): e22733. DOI: 10.1096/fj.202201488R .
[26]
Hu Z, Yuan Y, Zhang X, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate oxygen-glucose deprivation/reperfusion-induced microglial pyroptosis by promoting FOXO3a-dependent mitophagy[J]. Oxid Med Cell Longev, 2021, 2021: 6219715. PMCID: PMC8577931. DOI: 10.1155/2021/6219715 .
[27]
Jie Z, Huan Y, Mengyun W, et al. Nrf2 modulates immunosuppressive ability and cellular senescence of human umbilical cord mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2020, 526(4): 1021-1027. DOI: 10.1016/j.bbrc.2020.03.175 .
[28]
Nishikawa S, Inoue Y, Hori Y, et al. Anti-inflammatory activity of kurarinone involves induction of HO-1 via the KEAP1/Nrf2 pathway[J]. Antioxidants (Basel), 2020, 9(9): 842. PMCID: PMC7554885. DOI: 10.3390/antiox9090842 .
[29]
Xian P, Hei Y, Wang R, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice[J]. Theranostics, 2019, 9(20): 5956-5975. PMCID: PMC6735367. DOI: 10.7150/thno.33872 .
[30]
Kopacz A, Klóska D, Proniewski B, et al. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells[J]. Redox Biol, 2020, 28: 101304. PMCID: PMC6731384. DOI: 10.1016/j.redox.2019.101304 .
[31]
Wang L, Zhang X, Xiong X, et al. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke[J]. Antioxidants (Basel), 2022, 11(12): 2377. PMCID: PMC9774301. DOI: 10.3390/antiox11122377 .
[32]
Zhang W, Wei R, Zhang L, et al. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation[J]. Neuroscience, 2017, 366: 95-104. DOI: 10.1016/j.neuroscience.2017.09.035 .
[33]
Li Q, Lou J, Yang T, et al. Ischemic preconditioning induces oligodendrogenesis in mouse brain: effects of Nrf2 deficiency[J]. Cell Mol Neurobiol, 2022, 42(6): 1859-1873. PMCID: PMC11421701. DOI: 10.1007/s10571-021-01068-5 .

Footnotes

所有作者声明不存在利益冲突。

PDF(2571 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/