Clinical characteristics of DUX4-IGH fusion B-cell acute lymphoblastic leukemia in children

Yu-Xuan LUO, Hua JIANG, Jia-Yi WANG, Wen-Ge HAO, Wei-Na ZHANG

Chinese Journal of Contemporary Pediatrics ›› 2026, Vol. 28 ›› Issue (1) : 78-83.

PDF(560 KB)
HTML
PDF(560 KB)
HTML
Chinese Journal of Contemporary Pediatrics ›› 2026, Vol. 28 ›› Issue (1) : 78-83. DOI: 10.7499/j.issn.1008-8830.2505019
CLINICAL RESEARCH

Clinical characteristics of DUX4-IGH fusion B-cell acute lymphoblastic leukemia in children

Author information +
History +

Abstract

Objective To study the clinical characteristics of DUX4-IGH fusion B-cell acute lymphoblastic leukemia (B-ALL) in children in order to inform the diagnosis and treatment of this subtype. Methods Clinical data of children with DUX4-IGH fusion B-ALL treated at Women and Children's Medical Center, Guangzhou Medical University from September 2020 to April 2024 were collected. DUX4-IGH fusion was identified by transcriptome sequencing, and clinical features, laboratory findings, and treatment outcomes were retrospectively analyzed. Results Among 315 children with B-ALL, 17 DUX4-IGH fusion cases were detected by transcriptome sequencing, accounting for 5.4%. The median age was 5.5 years (range: 2 years and 10 months to 12 years). Chromosome karyotypes were mostly normal. Based on age, white blood cell count, and central nervous system involvement, 15 patients (88.2%) were classified as low risk at initial diagnosis. After evaluation of treatment response, 7 patients were low risk and 10 were intermediate risk. The median follow-up was 38 months (range: 34 to 43 months), and the longest follow-up was 55 months. Minimal residual disease remained persistently negative in all 17 patients, and all patients remained event-free during follow-up. Conclusions DUX4-IGH fusion is relatively common in pediatric B-ALL. Transcriptome sequencing enables sensitive detection of this fusion, aiding precise subtyping and prognostic assessment. Early induction response is suboptimal, but the overall prognosis is favorable.

Key words

B-cell acute lymphoblastic leukemia / DUX4-IGH fusion gene / Minimal residual disease / Transcriptome sequencing / Child

Cite this article

Download Citations
Yu-Xuan LUO , Hua JIANG , Jia-Yi WANG , et al . Clinical characteristics of DUX4-IGH fusion B-cell acute lymphoblastic leukemia in children[J]. Chinese Journal of Contemporary Pediatrics. 2026, 28(1): 78-83 https://doi.org/10.7499/j.issn.1008-8830.2505019

References

[1]
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children[J]. N Engl J Med, 2015, 373(16): 1541-1552. DOI: 10.1056/NEJMra1400972 .
[2]
Hendrickson PG, Doráis JA, Grow EJ, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons[J]. Nat Genet, 2017, 49(6): 925-934. PMCID: PMC5703070. DOI: 10.1038/ng.3844 .
[3]
Whiddon JL, Langford AT, Wong CJ, et al. Conservation and innovation in the DUX4-family gene network[J]. Nat Genet, 2017, 49(6): 935-940. PMCID: PMC5446306. DOI: 10.1038/ng.3846 .
[4]
Geng LN, Yao Z, Snider L, et al. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy[J]. Dev Cell, 2012, 22(1): 38-51. PMCID: PMC3264808. DOI: 10.1016/j.devcel.2011.11.013 .
[5]
Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults[J]. Nat Genet, 2016, 48(5): 569-574. DOI: 10.1038/ng.3535 .
[6]
Zhang J, McCastlain K, Yoshihara H, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia[J]. Nat Genet, 2016, 48(12): 1481-1489. PMCID: PMC5144107. DOI: 10.1038/ng.3691 .
[7]
Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling[J]. Cancer Cell, 2002, 1(2): 133-143. DOI: 10.1016/s1535-6108(02)00032-6 .
[8]
Clappier E, Auclerc MF, Rapion J, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions[J]. Leukemia, 2014, 28(1): 70-77. DOI: 10.1038/leu.2013.277 .
[9]
ZHANG J, MCCASTLAIN K, QU C, et al. Expression of an oncogenic ERG isoform characterizes a distinct subtype of B-progenitor acute lymphoblastic leukemia[J]. Blood, 2015, 126(23): 693. DOI: 10.1182/blood.V126.23.693.693 .
[10]
Shen S, Chen X, Cai J, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial[J]. JAMA Oncol, 2020, 6(3): 358-366. PMCID: PMC6990720. DOI: 10.1001/jamaoncol.2019.5868 .
[11]
许凤玲, 管贤敏, 温贤浩, 等. 儿童急性淋巴细胞白血病化疗相关严重不良反应的临床分析[J]. 中国当代儿科杂志, 2020, 22(8): 828-833. PMCID: PMC7441514. DOI: 10.7499/j.issn.1008-8830.2003253 .
[12]
Liu H, Li Z, Qiu F, et al. Association between NR3C1 mutations and glucocorticoid resistance in children with acute lymphoblastic leukemia[J]. Front Pharmacol, 2021, 12: 634956. PMCID: PMC8039513. DOI: 10.3389/fphar.2021.634956 .
[13]
冯刚, 熊蓉, 刘康. 《二代测序技术在肿瘤精准医学诊断中的应用专家共识》评述[J]. 西部医学, 2020, 32(11): 1561-1564.
[14]
汝昆. 《二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)》解读[J]. 临床血液学杂志, 2019, 32(5): 341-343. DOI: 10.13201/j.issn.1004-2806.2019.05.004 .
[15]
Jiang M, Zhang S, Yin H, et al. A comprehensive benchmarking of differential splicing tools for RNA-seq analysis at the event level[J]. Brief Bioinform, 2023, 24(3): bbad121. DOI: 10.1093/bib/bbad121 .
[16]
Potuckova E, Zuna J, Hovorkova L, et al. Intragenic ERG deletions do not explain the biology of ERG-related acute lymphoblastic leukemia[J]. PLoS One, 2016, 11(8): e0160385. PMCID: PMC4975502. DOI: 10.1371/journal.pone.0160385 .
[17]
Hewitt JE. Loss of epigenetic silencing of the DUX4 transcription factor gene in facioscapulohumeral muscular dystrophy[J]. Hum Mol Genet, 2015, 24(R1): R17-R23. DOI: 10.1093/hmg/ddv237 .
[18]
Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia[J]. Nat Commun, 2016, 7: 11790. PMCID: PMC4897744. DOI: 10.1038/ncomms11790 .
[19]
Liu YF, Wang BY, Zhang WN, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia[J]. EBioMedicine, 2016, 8: 173-183. PMCID: PMC4919728. DOI: 10.1016/j.ebiom.2016.04.038 .
[20]
Dong X, Zhang W, Wu H, et al. Structural basis of DUX4/IGH-driven transactivation[J]. Leukemia, 2018, 32(6): 1466-1476. PMCID: PMC5990521. DOI: 10.1038/s41375-018-0093-1 .
[21]
Zhang H, Meng G. A typical bedside-to-bench investigation of leukemogenic driver MEF2D fusion reveals new targeted therapy in B-cell acute lymphoblastic leukemia[J]. Blood Sci, 2022, 4(3): 161-163. PMCID: PMC9742090. DOI: 10.1097/BS9.0000000000000126 .
[22]
Li Z, Lee SHR, Chin WHN, et al. Distinct clinical characteristics of DUX4- and PAX5-altered childhood B-lymphoblastic leukemia[J]. Blood Adv, 2021, 5(23): 5226-5238. PMCID: PMC9152998. DOI: 10.1182/bloodadvances.2021004895 .
[23]
Jeha S, Choi J, Roberts KG, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy[J]. Blood Cancer Discov, 2021, 2(4): 326-337. PMCID: PMC8265990. DOI: 10.1158/2643-3230.BCD-20-0229 .

Footnotes

所有作者均声明无利益冲突。

PDF(560 KB)
HTML

Accesses

Citation

Detail

Sections
Recommended

/