Relationship between macrophages and erythropoiesis
ZHANG Ran-Ran
Diagnosis and Treatment Center of Pediatric Blood Diseases, Institute of Hematology and Blood Disease Hospital, Pecking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300020, China
Abstract:Macrophages have two major roles in regulating the dynamic equilibrium in erythropoiesis, promoting the differentiation and maturation of nucleated red blood cells into reticulocytes and removing old red blood cells. A recent mouse study has demonstrated that the phenotype of macrophages in erythroblastic islands is CD169+ VCAM-1+ ER-HR3+ CD11b+ F4/80+ Ly-6G+. Molecular connections between erythroid progenitor cells and central macrophages help to maintain the function and integrity of erythroblastic islands. New research advances in Kruppel-like factor 1 (KLF1) provide new evidence for the important role of macrophages in erythroblastic islands. Macrophages play an important role in erythropoiesis both in sickness and in health, and provide a potential targeted therapy for diseases such as polycythemia vera and beta-thalassemia in the future.
Lee SH, Crocker PR, Westaby S, et al. Isolation and immunocytochemical characterization of human bone marrow stromal macrophages in hemopoietic clusters[J]. J Exp Med, 1988, 168(3): 1193-1198.
[3]
Gutknecht MF, Bouton AH. Functional significance of mononuclear phagocyte populations generated through adult hematopoiesis[J]. J Leukoc Biol, 2014, 96(6): 969-980.
[4]
Leimberg MJ, Prus E, Konijn AM, et al. Macrophages function as a ferritin iron source for cultured human erythroid precursors[J]. J Cell Biochem, 2008, 103(4): 1211-1218.
[5]
Korolnek T, Hamza I. Macrophages and iron trafficking at the birth and death of red cells[J]. Blood, 2015, 125(19): 2893-2897.
[6]
Soni S, Bala S, Gwynn B, et al. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion[J]. J Biol Chem, 2006, 281(29): 20181-20189.
[7]
Crocker PR, Werb Z, Gordon S, et al. Ultrastructural localization of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage-hematopoietic cell clusters[J]. Blood, 1990, 76(6): 1131-1138.
[8]
Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche[J]. J Exp Med, 2011, 208(2): 261-271.
[9]
Lee G, Lo A, Short SA, et al. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation[J]. Blood, 2006, 108(6): 2064-2071.
[10]
Sonoda Y, Sasaki K. Hepatic extramedullary hematopoiesis and macrophages in the adult mouse: histometrical and immunohistochemical studies[J]. Cells Tissues Organs, 2012, 196(6): 555-564.
[11]
Jacobsen RN, Forristal CE, Raggatt LJ, et al. Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ERHR3+ Ly6G+ erythroid island macrophages in the mouse[J]. Exp Hematol, 2014, 42(7): 547-561.
[12]
Chow A, Huggins M, Ahmed J, et al. CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress[J]. Nat Med, 2013, 19(4): 429-436.
[13]
Falchi M, Varricchio L, Martelli F, et al. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion[J]. Haematologica, 2015, 100(2): 178-187.
[14]
Chazaud B. Macrophages: supportive cells for tissue repair and regeneration[J]. Immunobiology, 2014, 219(3): 172-178.
[15]
de Back DZ, Kostova EB, van Kraaij M, et al. Of macrophages and red blood cells; a complex love story[J]. Front Physiol, 2014, 5: 9.
[16]
Bader BL, Rayburn H, Crowley D, et al. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins[J]. Cell, 1998, 95(4): 507-519.
[17]
Wang Z, Vogel O, Kuhn G, et al. Decreased stability of erythroblastic islands in integrin β3-deficient mice[J]. Physiol Rep, 2013, 1(2): e00018.
[18]
Spring FA, Griffiths RE, Mankelow TJ, et al. Tetraspanins CD81 and CD82 facilitate alpha4beta1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1[J]. PLoS One, 2013, 8(5): e62654.
[19]
Scott LM, Priestley GV, Papayannopoulou T. Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing[J]. Mol Cell Biol, 2003, 23(24): 9349-9360.
[20]
Ulyanova T, Scott LM, Priestley GV, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin[J]. Blood, 2005, 106(1): 86-94.
[21]
Ulyanova T, Jiang Y, Padilla S, et al. Combinatorial and distinct roles of alpha(5) and alpha(4) integrins in stress erythropoiesis in mice[J]. Blood, 2011, 117(3): 975-985.
[22]
Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis[J]. Exp Hematol, 2014, 42(5): 404-409.
[23]
Walkley CR. Erythropoiesis, anemia and the bone marrow microenvironment[J]. Int J Hematol, 2011, 93(1): 10-13.
[24]
Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and betathalassemia[ J]. Nat Med, 2013, 19(4): 437-445.
[25]
Mao X, Shi X, Liu F, et al. Evaluation of erythroblast macrophage protein related to erythroblastic islands in patients with hematopoietic stem cell transplantation[J]. Eur J Med Res, 2013, 18: 9.
[26]
Robier C, Amouzadeh-Ghadikolai O, Bregant C, et al. The anti-VLA-4 antibody natalizumab induces erythroblastaemia in the majority of the treated patients with multiple sclerosis[J]. Mult Scler, 2014, 20(9): 1269-1272.
[27]
Papayannopoulou T, Nakamoto B. Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin[J]. Proc Natl Acad Sci U S A, 1993, 90(20): 9374-9378.
[28]
Jacobsen RN, Perkins AC, Levesque JP. Macrophages and regulation of erythropoiesis[J]. Curr Opin Hematol, 2015, 22(3): 212-219.
[29]
Sui Z, Nowak RB, Bacconi A, et al. Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver[J]. Blood, 2014, 123(5): 758-767.
[30]
Toda S, Segawa K, Nagata S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands[J]. Blood, 2014, 123(25): 3963-3971.
[31]
McGrath KE. Red cell island dances: switching hands[J]. Blood, 2014, 123(25): 3847-3848.
[32]
Tang H, Chen S, Wang H, et al. TAM receptors and the regulation of erythropoiesis in mice[J]. Haematologica, 2009, 94(3): 326-334.
[33]
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis[J]. Blood, 2011, 118(8): 2044-2054.
[34]
Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq[J]. Genome Res, 2012, 22(12): 2385-2398.
[35]
Porcu S, Manchinu MF, Marongiu MF, et al. Klf1 affects DNase II-alpha expression in the central macrophage of a fetal liver erythroblastic island: a non-cell-autonomous role in definitive erythropoiesis[J]. Mol Cell Biol, 2011, 31(19): 4144-4154.
[36]
Xue L, Galdass M, Gnanapragasam MN, et al. Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche[J]. Development, 2014, 141(11): 2245-2254.
[37]
Kawane K, Fukuyama H, Kondoh G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver[J]. Science, 2001, 292(5521): 1546-1549.
[38]
Jaffray JA, Mitchell WB, Gnanapragasam MN, et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: review of all reported cases and development of a clinical diagnostic paradigm[J]. Blood Cells Mol Dis, 2013, 51(2): 71-75.
[39]
Socolovsky M. Exploring the erythroblastic island[J]. Nat Med, 2013, 19(4): 399-401.
[40]
Strnad M, Todoric Zivanovic B, Tatomirovic Z, et al. JAK2V617F mutation and endogenous erythroid colony formation in patients with polycythaemia vera[J]. J BUON, 2014, 19(4): 985-991.
[41]
Kotsis T, Pappas E, Sarmas G, et al. Carotid endarterectomy in a young symptomatic patient with β-thalassemia major[J]. Ann Vasc Surg, 2015, 29(4): 838. e1-5.