Abstract:Objective To study the characteristics of gut microbiota and its association with the activity of β-glucuronidase (β-GD) in neonates with hyperbilirubinemia. Methods A total of 50 neonates with hyperbilirubinemia who were admitted in January to December, 2018, were enrolled as the hyperbilirubinemia group, and 30 neonates without hyperbilirubinemia were enrolled as the control group. The 16S rRNA high-throughput sequencing method was used to compare gut microbiota between the two groups. The phenolphthalein-glucuronic acid substrate method was used to measure the activity of β-GD in the intestinal tract of neonates with hyperbilirubinemia before and after treatment. Results The comparison of the distribution of gut microbiota at the genus level showed a significant difference in the abundance of 52 bacteria between the hyperbilirubinemia and control groups before treatment (P < 0.05), as well as a significant difference in the abundance of 42 bacteria between the hyperbilirubinemia group on day 3 after treatment and the control group on day 3 after enrollment (P < 0.05). After treatment, the hyperbilirubinemia group had significant reductions in the content of Escherichia and Staphylococcus in the intestinal tract (P < 0.05) and the activity of β-GD in feces (P < 0.05). The activity of β-GD in feces was positively correlated with the abundance of Staphylococcus and Escherichia before and after treatment in the neonates with hyperbilirubinemia (rs=0.5948-0.7245, P < 0.01). Conclusions There are differences in gut microbiota between the neonates with hyperbilirubinemia and those without hyperbilirubinemia. The activity of β-GD in feces is positively correlated with the abundance of Staphylococcus and Escherichia in neonates with hyperbilirubinemia. Gut microbiota may affect the development of neonatal hyperbilirubinemia by regulating the activity of β-GD. The determination and analysis of gut microbiota and β-GD activity may have certain clinical significance for the early assessment of the development of neonatal hyperbilirubinemia.
TANG Wei,LU Hong-Yan,SUN Qin et al. Characteristics of gut microbiota and its association with the activity of β-glucuronidase in neonates with hyperbilirubinemia[J]. CJCP, 2021, 23(7): 677-683.
Bhutani VK, Vilms RJ, Hamerman-Johnson L. Universal bilirubin screening for severe neonatal hyperbilirubinemia[J]. J Perinatol, 2010, 30(Suppl):S6-S15. DOI:10.1038/jp.2010.98. PMID:20877410.
[2]
Mir SE, van der Geest BAM, Been JV. Management of neonatal jaundice in low- and lower-middle-income countries[J]. BMJ Paediatr Open, 2019, 3(1):e000408. DOI:10.1136/bmjpo-2018-000408. PMID:30957028. PMCID:PMC6422246.
[3]
Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health:an integrative view[J]. Cell, 2012, 148(6):1258-1270. DOI:10.1016/j.cell.2012.01.035. PMID:22424233. PMCID:PMC5050011.
[4]
Lata J, Jurankova J, Kopacova M, et al. Probiotics in hepatology[J]. World J Gastroenterol, 2011, 17(24):2890-2896. DOI:10.3748/wjg.v17.i24.2890. PMID:21734800. PMCID:PMC3129503.
[5]
Sommer F, Bäckhed F. The gut microbiota:masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4):227-238. DOI:10.1038/nrmicro2974. PMID:23435359.
[6]
Friedrich MJ. Genomes of microbes inhabiting the body offer clues to human health and disease[J]. JAMA, 2013, 309(14):1447-1449. DOI:10.1001/jama.2013.2824. PMID:23571560.
[7]
Palmer C, Bik EM, Digiulio DB, et al. Development of the human infant intestinal microbiota[J]. PLoS Biol, 2007, 5(7):e177. DOI:10.1371/journal.pbio.0050177. PMID:17594176. PMCID:PMC1896187.
[8]
Mirghafourvand M, Seyedi R, Dost AJ, et al. Relationship between neonatal skin bilirubin level and severe jaundice with maternal, childbirth, and neonatal characteristics[J]. Iran J Neonatol, 2019, 10(2):61-67. DOI:10.22038/ijn.2019.33282.1478.
[9]
Zubaida B, Cheema HA, Hashmi MA, et al. Spectrum of UGT1A1 variants in Pakistani children affected with inherited unconjugated hyperbilirubinemias[J]. Clin Biochem, 2019, 69:30-35. DOI:10.1016/j.clinbiochem.2019.05.012. PMID:31145902.
[10]
Agans R, Rigsbee L, Kenche H, et al. Distal gut microbiota of adolescent children is different from that of adults[J]. FEMS Microbiol Ecol, 2011, 77(2):404-412. DOI:10.1111/j.1574-6941.2011.01120.x. PMID:21539582. PMCID:PMC4502954.
[11]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227. DOI:10.1038/nature11053. PMID:22699611. PMCID:PMC3376388.
Vítek L, Zelenka J, Zadinová M, et al. The impact of intestinal microflora on serum bilirubin levels[J]. J Hepatol, 2005, 42(2):238-243. DOI:10.1016/j.jhep.2004.10.012. PMID:15664250.
[14]
Tuzun F, Kumral A, Duman N, et al. Breast milk jaundice:effect of bacteria present in breast milk and infant feces[J]. J Pediatr Gastroenterol Nutr, 2013, 56(3):328-332. DOI:10.1097/MPG.0b013e31827a964b. PMID:23132163.
[15]
Thongaram T, Hoeflinger JL, Chow J, et al. Prebiotic galactooligosaccharide metabolism by probiotic lactobacilli and bifidobacteria[J]. J Agric Food Chem, 2017, 65(20):4184-4192. DOI:10.1021/acs.jafc.7b00851. PMID:28466641.
[16]
Slusher TM, Zamora TG, Appiah D, et al. Burden of severe neonatal jaundice:a systematic review and meta-analysis[J]. BMJ Paediatr Open, 2017, 1(1):e000105. DOI:10.1136/bmjpo-2017-000105. PMID:29637134. PMCID:PMC5862199.
[17]
Najati N, Gharebaghi MM, Mortazavi F. Underlying etiologies of prolonged icterus in neonates[J]. Pak J Biol Sci, 2010, 13(14):711-714. DOI:10.3923/pjbs.2010.711.714. PMID:21848064.
[18]
Henny-Harry C, Trotman H. Epidemiology of neonatal jaundice at the University Hospital of the West Indies[J]. West Indian Med J, 2012, 61(1):37-42. PMID:22808564.
[19]
Wen CC, Cai JZ, Lin CL, et al. Gradient elution liquid chromatography mass spectrometry determination of acetylcorynoline in rat plasma and its application to a pharmacokinetic study[J]. Xenobiotica, 2014, 44(8):743-748. DOI:10.3109/00498254.2014.887802. PMID:24512634.
[20]
Ahlfors CE, Parker AE. Bilirubin binding contributes to the increase in total bilirubin concentration in newborns with jaundice[J]. Pediatrics, 2010, 126(3):e639-e643. DOI:10.1542/peds.2010-0614. PMID:20679308.
[21]
Henao-Mejia J, Elinav E, Thaiss CA, et al. Role of the intestinal microbiome in liver disease[J]. J Autoimmun, 2013, 46:66-73. DOI:10.1016/j.jaut.2013.07.001. PMID:24075647.
[22]
Redinbo MR. The microbiota, chemical symbiosis, and human disease[J]. J Mol Biol, 2014, 426(23):3877-3891. DOI:10.1016/j.jmb.2014.09.011. PMID:25305474. PMCID:PMC4252811.
[23]
Gmeiner M, Kneifel W, Kulbe KD, et al. Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor)[J]. Appl Microbiol Biotechnol, 2000, 53(2):219-223. DOI:10.1007/s002530050011. PMID:10709985.
[24]
Matamoros S, Gras-Leguen C, Le Vacon F, et al. Development of intestinal microbiota in infants and its impact on health[J]. Trends Microbiol, 2013, 21(4):167-173. DOI:10.1016/j.tim.2012.12.001. PMID:23332725.
[25]
Pollet RM, D'Agostino EH, Walton WG, et al. An atlas of β-glucuronidases in the human intestinal microbiome[J]. Structure, 2017, 25(7):967-977.e5. DOI:10.1016/j.str.2017.05.003. PMID:28578872. PMCID:PMC5533298.